SOUTH FORK HOPPERS CREEK STREAM AND WETLAND RESTORATION PROJECT

ANNUAL MONITORING REPORT FOR 2007 (YEAR 2)

Project Number: D04006-4

Submitted to:

NCDENR Ecosystem Enhancement Program 2728 Capital Blvd, Suite 1H 103 Raleigh, NC 27604

Prepared for: EBX Neuse-I, LLC

909 Capability Drive Suite 3100 Raleigh, NC 27606 Prepared by: Baker Engineering NY, Inc.

1447 S. Tryon St. Suite 200 Charlotte, NC 28203

November, 2007

TABLE OF CONTENTS

SUMMARY

1.0	PROJECT BACKGROUND	1
2.0	VEGETATION MONITORING	7
2.1	Soil Data	7
2.2	Description of Species and Monitoring Protocol	8
2.3	Vegetation Success Criteria	8
2.4	Results of Vegetative Monitoring	
2.5	Vegetation Observations	
2.6	Vegetation Photos	10
3.0	STREAM MONITORING	10
3.1	Description of Stream Monitoring	10
3.2	Stream Restoration Success Criteria	
3.3	Bankfull Discharge Monitoring Results	
3.4	Stream Monitoring Data and Photos	
3.5	Stream Stability Assessment	
3.6	Cross-section, Longitudinal Profile, and Bed Material Analysis Monitoring Results	13
4.0	HYDROLOGY MONITORING	14
5.0	BENTHIC MACROINVERTEBRATE MONITORING	16
5.1	Description of Benthic Macroinvertebrate Monitoring	16
5.2	Benthic Macroinvertebrate Sampling Results and Discussion	17
5.3	Habitat Assessment Results and Discussion	
5.4	Photograph Log	19
6.0	CONCLUSIONS AND RECOMMENDATIONS	19
7.0	WILDLIFE OBSERVATIONS	20
8.0	REFERENCES	20

FIGURES

Figure 1 – Vicinity Map

Figure 2 – Topo Map

Figure 3 – Restoration Summary Map

Figure 4 – Wetlands Summary Map

APPENDICES

APPENDIX A – Photo Logs

APPENDIX B – Stream Monitoring Data

APPENDIX C – As-built Plan Sheets

APPENDIX D – Baseline Stream Summary for Restoration Reaches

APPENDIX E – Morphology and Hydraulic Monitoring Summary – Year 2

i

APPENDIX F – Benthic Macroinvertebrate Monitoring Data

LIST OF TABLES

Table 1.	Project Mitigation Approach
Table 2.	Project Activity and Reporting History
Table 3.	Project Contact Table
Table 4.	Project Background
Table 5.	Soil Data for Project
Table 6.	Tree Species Planted
Table 7.	Year 2 Stem Counts for Each Species Arranged by Plot
Table 8.	Volunteers within Wetland Restoration Area
Table 9.	Verification of Bankfull Events
Table 10.	Categorical Stream Feature Visual Stability Assessment
Table 11.	Comparison of Historic Rainfall to Observed Rainfall
Table 12.	Comparison of Hydrologic Monitoring Results for Year 2 and Year 1
Table 13.	Pre-restoration vs. Post-restoration Benthic Macroinvertebrate Sampling Data

LIST OF FIGURES

Figure 1.	Vicinity Map
Figure 2	Topographic Map
Figure 3	Restoration Summary Map
Figure 4	Wetlands Summary Map
Figure 5	Historic Average vs. Observed Rainfall

SUMMARY

This Annual Report details the monitoring activities during the 2007 growing season on the South Fork Hoppers Creek Wetland and Stream Restoration Site ("Site"). Construction of the Site, including planting of trees, was completed in April 2006. In order to document project success, ten vegetation monitoring plots, sixteen permanent cross-sections, 3,562 linear feet of longitudinal profiles, one rain gauge, one crest gauge and eight hydrologic monitoring gauges (five automated and three manual) were installed and assessed across the Site. The 2007 data represents results from the second year of vegetation and hydrologic monitoring for both wetlands and streams and from the first year of macroinvertebrate data for streams.

Prior to restoration, wetland, stream, and buffer functions on the Site were impaired as a result of agricultural conversion. Streams flowing through the Site had been channelized to reduce flooding and provide drainage for adjacent farm fields. After construction it was determined that 5.6 acres of riverine wetlands and 7,229 linear feet (LF) of stream were restored, and 1.4 acres of riverine wetlands were enhanced.

Weather station data from the Natural Resources Conservation Service (NRCS) National Climate and Water Center (Marion WETS Station in McDowell County – NC 5340) and the US Geological Survey (USGS) Water Data for North Carolina (USGS 03451500 French Broad River at Asheville, NC) were used in conjunction with a manual rain gauge located on the Site to document precipitation amounts. For the 2007 growing season, November 2006 through January 2007 rainfall was normal or above normal; however from February 2007 through October 2007 rainfall was recorded as below normal for greater than 55 percent of the time. The monitoring well data shows that six of the eight hydrologic monitoring gauges had met the 7 percent hydrologic success criteria based on field observations in 2007. The remaining two wells documented hydroperiods similar to those documented for the reference monitoring wells.

Ten monitoring plots that are 10 meters by 10 meters or 0.025 of an acre in size were used to assess survivability of the woody vegetation planted on site. They are randomly located to represent the different zones within the project. The vegetation monitoring documented a survivability range of 560 stems per acre to 720 stems per acre with an overall average of 644 stems per acre. Overall, the Site is on track for meeting the initial vegetation survival criteria of 320 stems per acre surviving after the third growing season.

In general, dimension, pattern, profile and in-stream structures remained stable during the second growing season. Minor scour erosion was noted along the upstream end of a few rootwads at stations 124+50, 126+75, and 133+50. The erosion appears to have taken place before vegetation was fully established. Minor stream dimension aggradation was documented at a few cross-sections and has occurred within the last year. On-site evaluation suggests that this is due to increased sediment supply upstream from the site and a beaver dam located just downstream of the site that is holding back flow and allowing sediment to settle out of the water column. Point bar formation along the inside of a meander bend indicates flow velocity vectors occurring as designed. All monitored cross-sections fell within the quantitative parameters defined for "C" type channels. Five bankfull events were observed and documented during the months of January, March, May, July, and September.

In summary, the Site is on track to achieve the hydraulic, vegetative, and stream success criteria specified in the Site's Restoration Plan.

1.0 PROJECT BACKGROUND

The South Fork Hoppers Creek Restoration Site is located in McDowell County, North Carolina (Figure 1). The Site lies in the Catawba River Basin within North Carolina Division of Water Quality (NCDWQ) sub-basin 03-08-30 and US Geologic Survey (USGS) hydrologic unit 03050101040020. The Site has a recent history of pasture and general agricultural usage. The streams of the Site were channelized and riparian vegetation was cleared in most locations. Stream and riparian functions on the Site had been severely impacted as a result of agricultural conversion.

The project involved the restoration of 5.6 acres of riverine wetlands, enhancement of 1.4 acres of riverine wetlands, and restoration of 7,229 linear feet (LF) of stream along South Fork Hoppers Creek (the mainstem) and one unnamed tributary (UT 1). A total of 33.8 acres of stream, wetland, and riparian buffer are protected through a permanent conservation easement.

1.1 Project Location

The Site is located approximately 30 miles northwest of the town of Shelby in McDowell County, North Carolina (Figure 1 & 2). From Shelby take NC Highway 226 north towards Dysartsville. Approximately 3 miles past the Rutherford/McDowell County line, turn left onto Walker Road. Take the next right onto Pierce Road. The Site is divided into two separate sections by Pierce Road. Access for the downstream section is northeast of the culvert crossing. The conservation easement gate for the upstream section is southwest of the culvert crossing.

1.2 Mitigation Goals and Objectives

The specific goals for the South Fork Hoppers Creek Restoration Project were as follows:

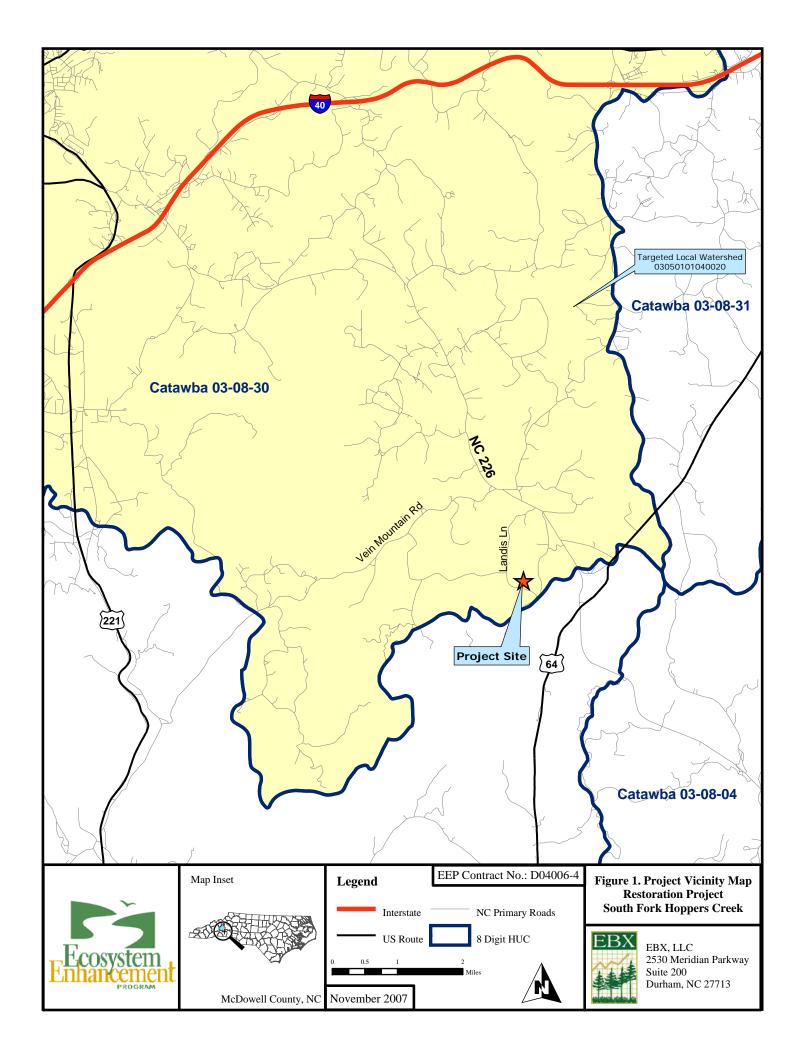
- Restoration of 7,229 LF of stream channel.
- Restoration of 5.6 acres of riverine wetlands.
- Enhancement of 1.4 acres of existing riverine wetlands.
- Removal of cattle access to the stream channel, wetland and riparian buffer areas.
- Improvement of floodplain functionality by matching floodplain elevations with the bankfull stage.
- Establishment of native wetland and floodplain vegetation within the conservation easement.
- Improvement of wildlife habitat functions of the Site.

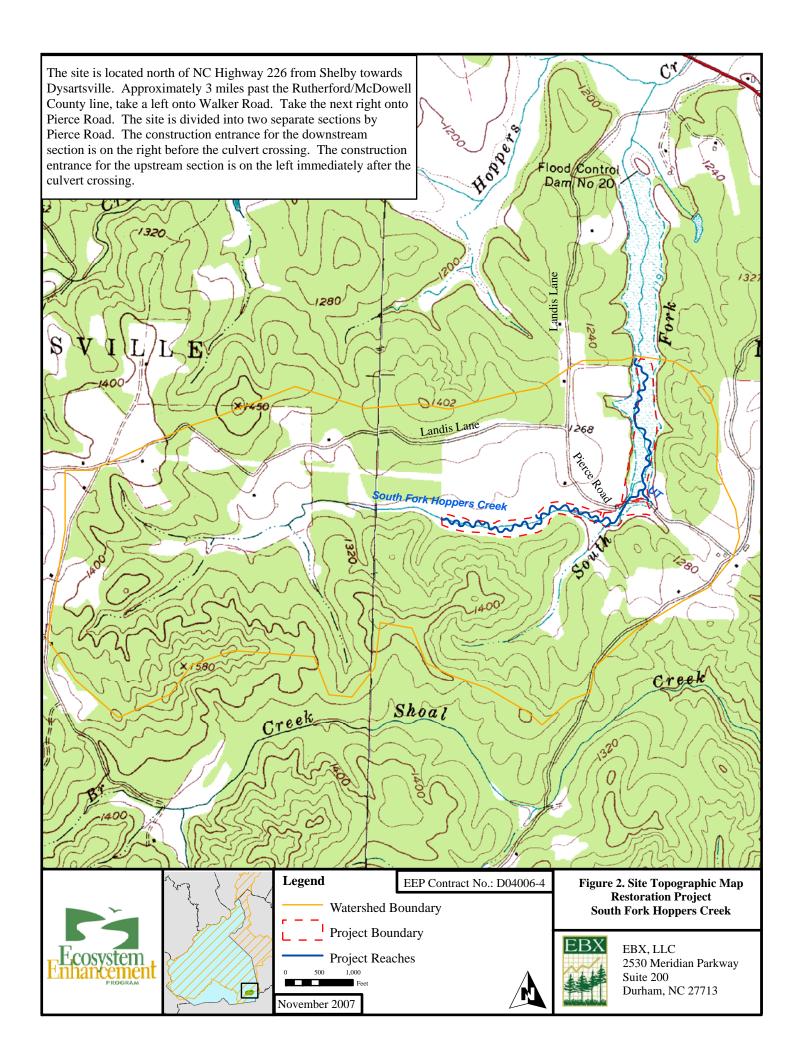
1.3 Project Description and Restoration Approach

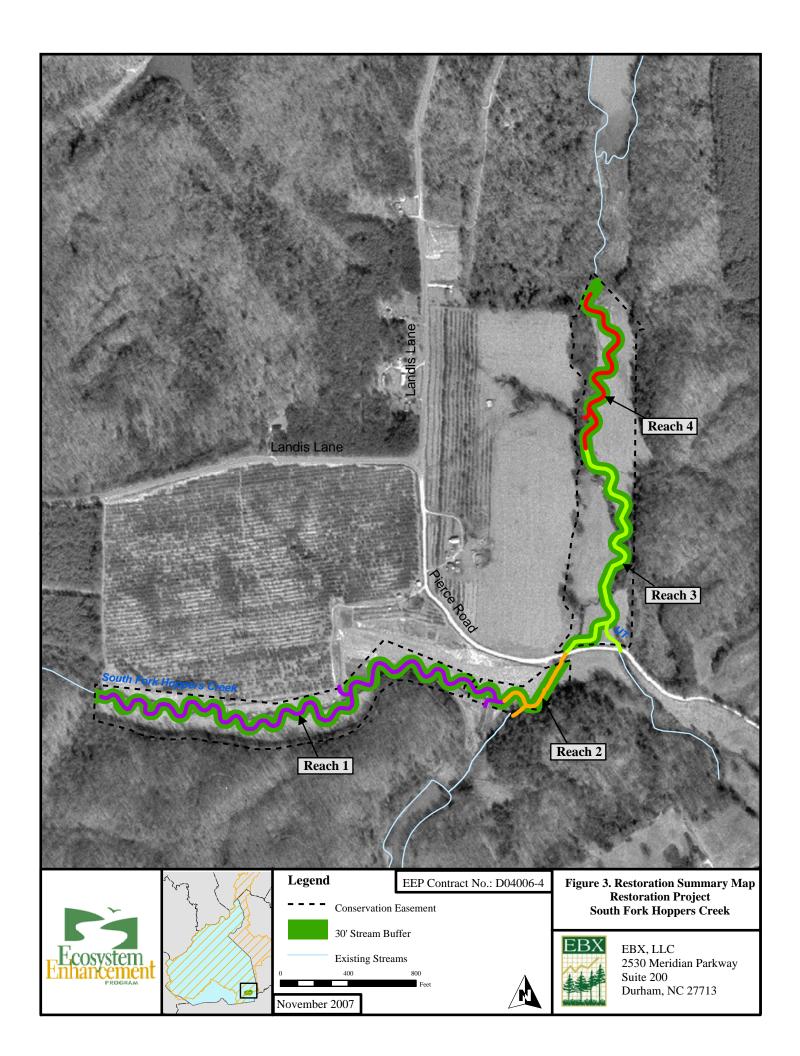
For assessment and analysis purposes, the on-site streams were divided into five reaches: four along the mainstem, and one on UT 1 that flows into the mainstem downstream of Pierce Road (Figure 3). The following paragraphs describe the Site's pre-construction conditions.

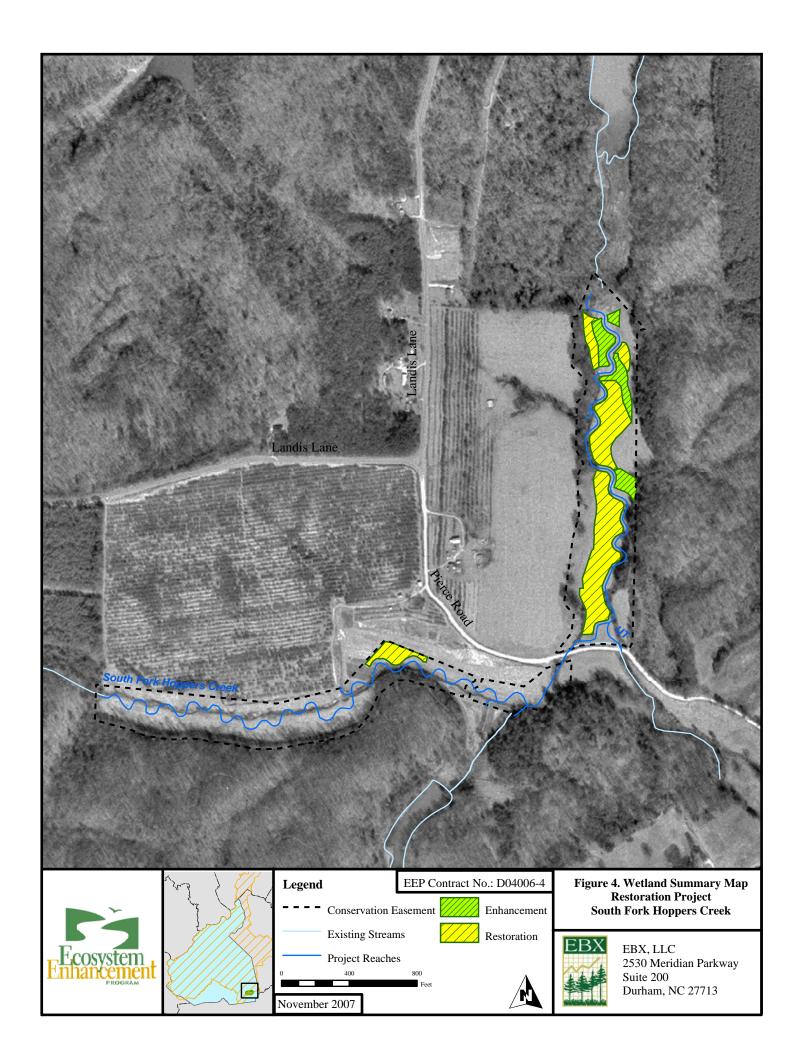
The mainstem entered the Site from the southwest and flowed east through a 48-inch corrugated metal pipe (CMP) culvert. Reach 1 continued east through a pasture for approximately 1,500 LF and then entered a second 48-inch CMP culvert. Reach 2 began 1,000 LF downstream of the second 48-inch culvert, at the confluence of a small tributary, and continued east and north for 578 LF to twin, 72-inch CMP culverts under Pierce Road. Reach 3 began downstream of the twin culverts and continued approximately 1,200 LF north through an abandoned pasture. Reach 4 extended the final 900 LF to the north project boundary and was characterized by a flatter slope, finer bed material, and a lower bank height ratio than the other 3 reaches.

1


UT 1 entered the Site through a 36-inch culvert under Pierce Road, then flowed east to west, parallel to Pierce Road, and entered Reach 3 approximately 80 LF downstream of the twin, 72-inch culverts. UT 1 had a reach length of 306 LF on the project Site.


For design purposes, the mainstem was divided into two reaches. From the assessment, Reach 1 correlates to Design Reach 1, while Reaches 2, 3, and 4 were combined for Design Reach 2.


It is likely that much of the project area once existed as a wetland ecosystem, as evidenced by hydric soil areas across the bottomland fields of the Site, as well as landowner accounts of wet areas of the Site prior to drainage activities. Wetland areas that once existed on the Site were drained and manipulated to promote agricultural uses. The stream was channelized within the project site to improve surface and subsurface drainage and to decrease flooding. Subsurface drain tiles were also installed in floodplain areas of the project Site, particularly the field downstream of Pierce Road. As a result, wetland functions were impacted within the project area. The channelization of the stream impaired its ability to function naturally, resulting in areas of active bank erosion and an overall poor habitat condition.


Design for the restored stream involved the construction of a new channel meandering through the agricultural fields. The restored mainstem was a Rosgen "C" stream type channel with a low width/depth cross-sectional area approaching typical Rosgen "E" type dimensions. A Rosgen "B" stream type was used for the restored UT 1 channel. Each stream type's design dimensions are based on those of reference parameters. Wetland restoration of the agricultural fields on the Site involved raising the local water table to restore a natural flooding regime. The stream through the Site was restored to a stable dimension, pattern, and profile, such that riverine wetland functions were restored to the adjacent hydric soil areas. Drainage ditches within the restoration areas were filled to decrease surface and subsurface drainage and raise the local water table. Total stream length across the Site was increased from approximately 5,579 LF to 7,229 LF. Total wetland acreage was increased from 2.17 acres to 5.6 acres. Assessment of the restored site determined that 7,229 stream mitigation units (SMU) were provided for the stream restoration and a total of 6.3 wetlands mitigation units (WMU) were achieved for wetland restoration and enhancement.

The design allows stream flows larger than the bankfull to spread onto the floodplain, dissipating flow energies and reducing stress on stream banks. In-stream structures were used to control streambed grade, reduce stress on stream banks, and promote bedform sequences and habitat diversity. The in-stream structures consisted of root-wads, cover logs and log vanes, which promote a diversity of habitat features in the restored channel. Where grade control was a consideration, constructed riffles or rock cross vanes were installed to provide long-term stability. Stream banks were stabilized using a combination of erosion control matting, live stakes, bare-root planting, and transplants. Transplants provide living root mass to increase stream bank stability and create holding areas for fish and aquatic biota. Native vegetation was planted across the Site, and the entire restoration site is protected through a permanent conservation easement.

Table 1. Project Mitigation Approach

	South Fork Hoppers Creek Restoration Site: Project No. D04006-4									
Existing Segment or Reach ID	Existing Feet / Acreage	Mitigation Type *	Approach**	Footage / Acreage	Mitigation Ratio	Mitigation Units	Stationing	Comment		
UT1	306 LF	R	P1	203 LF	1	203	200+00 - 202+03	Restoration of dimension, pattern, and profile to a "B" stream type.		
South Fork Hoppers Reach 1	2,595 LF	R	P1 & P2	3,528 LF	1	3528	110+85 - 146+17	Restoration to a "C" approaching "E" stream type and P2 used to tie into the Pierce Road culvert.		
South Fork Hoppers Reach 2	2,678 LF	R	P1 & P2	3,498 LF	1	3498	146+17 - 181+70	Restoration to a "C" approaching "E" stream type and P2 used to tie channel into the Pierce Road culvert.		
Wetland Enhancement	2.53	Е		1.4 Ac	0.5	0.7	164+50 - 166 + 90 (R) 171+05 - 176+79 (R) 175+91 - 179+52 (L) 178+31 - 179+52 (R)	Planting, and raising water table		
Wetland Restoration	Ac	R		5.6 Ac	1	5.6	135+79 - 139+00 (L) 154+53 - 167+80 (L) 166+89 - 174+25 (R) 175+50 - 177+67 (R) 175+70 - 180+43 (L)	Grading, soil roughing, planting, and raising water table		

Total linear feet of channel restored: 7,229 **Total Stream Mitigation Units:** 7,229

Total acres of wetlands restored: 5.6 **Total Wetland Mitigation Units:** 6.3

R = Restoration ** P1 = Priority I E = Enhancement P2 = Priority II E = Enhancement P3 = Priority III E = Enhancement I E = Enhancement II

1.4 Project History and Background

The chronology of the South Fork Hoppers Creek Restoration Project is presented in Table 2. The contact information for all designers, contractors, and relevant suppliers is presented in Table 3. Relevant project background information is presented in Table 4.

Table 2. Project Activity and Reporting History

South Fork Hoppers Creek Restoration Site	e: Project No. D040	06-4
Activity or Report	Data Collection Complete	Actual Completion or Delivery
Restoration Plan Prepared	N/A	Mar-05
Restoration Plan Amended	N/A	Apr-05
Restoration Plan Approved	N/A	
Final Design – (at least 90% complete)	N/A	Aug-05
Construction Begins	N/A	Jun-05
Temporary S&E mix applied to entire project area	N/A	N/A
Permanent seed mix applied to entire project area	N/A	Apr-06
Planting of live stakes	N/A	Apr-06
Planting of bare root trees	N/A	Apr-06
End of Construction	N/A	May-06
Survey of As-built conditions (Year 0 Monitoring-baseline)	Jun-06	Jul-06
Repair work	Oct-06	Oct-06
	Unknown	Unknown
Year 1 Monitoring	Oct-06	Nov-06
Year 2 Monitoring	Oct-07	Nov-07
Year 3 Monitoring (Scheduled)	Oct-08	Nov-08
Year 4 Monitoring (Scheduled)	Oct-09	Nov-09
Year 5 Monitoring (Scheduled)	Oct-10	Nov-10

Table 3. Project Contact Table

South Fork Hoppers Creek Restoration Site : Project No.D04006-4						
Full Service Delivery Contractor						
EBX-Neuse I, LLC	2530 Meridian Parkway, Suite 200 Durham, NC 27713 Contact: Norton Webster, Tel. 919-806-4542					
Designer	11011011 11 000101, 101. 919 000 10 12					
Baker Engineering NY, Inc.	1447 S. Tryon Street, Suite 200 Charlotte, NC 28203 Contact: Eng. Chris Yow, Tel 704-334-4454					
Construction Contractor						
Riverworks	8000 Regency Parkway, Suite 200 Cary, NC 27518 Contact: Will Pedersen, Tel. 919-459-9001					
Planting Contractor	,					
Riverworks	8000 Regency Parkway, Suite 200 Cary, NC 27518 Contact: Will Pedersen, Tel. 919-459-9001					
Seeding Contractor	Will I edersell, Tel. 717-437-7001					
Riverworks	8000 Regency Parkway, Suite 200 Cary, NC 27518 Contact: Will Pedersen, Tel. 919-459-9001					
Seed Mix Sources	Mellow Marsh Farm, 919-742-1200					
Nursery Stock Suppliers	International Paper, 1-888-888-7159					
Monitoring Performers	1 /					
Baker Engineering	1447 S. Tryon Street, Suite 200 Charlotte, NC 28203					
Stream Monitoring Point of Contact: Wetland Monitoring Point of Contact: Vegetation Monitoring Point of	Ian Eckardt, Tel.704-334-4454 Ian Eckardt, Tel.704-334-4454					
Contact:	Chris Hysmen, Tel. 336-406-0906					

Table 4. Project Background

South Fork Hoppers Creek Restoration Site: Project No. D04006-4				
Project County:	McDowell County, NC			
Drainage Area:				
South Fork Hoppers Reach 1	0.93 mi^2			
South Fork Hoppers Reach 2	1.38 mi^2			
UT1	0.07 mi^2			
Estimated Drainage % Impervious Cover:				
Reach: South Fork Hoppers Reach 1	< 5%			
Reach: South Fork Hoppers Reach 2	< 5%			
Reach: UT1	< 5%			
Stream Order:				
South Fork Hoppers Reach 1	2			
South Fork Hoppers Reach 2	2			
UT1	1			
Physiographic Region	Piedmont			
Ecoregion	Northern Inner Piedmont			
Rosgen Classification of As-built				
South Fork Hoppers Reach 1	C			
South Fork Hoppers Reach 2	C			
UT-1	В			
	Riverine, Upper Perennial,			
Cowardin Classification	Unconsolidated Bottom, Cobble-			
	Gravel			
Dominant Soil Types				
South Fork Hoppers Reach 1	IoA, EwE, HeD, HcC1			
South Fork Hoppers Reach 2	IoA, EwE, HeD, HcC2			
UT1	IoA			
Reference Site ID	Spencer Creek, Craig Creek, Big			
	Branch, Sals Branch			
USGS HUC for Project and Reference Sites	03050101040020			
NCDWQ Sub-basin for Project and Reference	03-08-30			
NCDWQ classification for Project and Reference	C			
Any portion of any project segment 303d listed?	No			
Any portion of any project segment upstream of	N			
a 303d listed segment?	No			
Reasons for 303d listing or stressor?	N/A			
Percent of project easement fenced	50%			

1.5 Project Monitoring Plan

Plans depicting the as-built conditions of the major project elements, location of permanent monitoring cross-sections, locations of hydrologic monitoring stations, and locations of permanent vegetation monitoring plots are presented in Appendix C of this report.

2.0 VEGETATION MONITORING

2.1 Soil Data

The soil data for the Site is presented in Table 5.

Table 5. Soil Data for Project

South Fork Hoppers Creek Restoration Site: Project No. D04006-4								
Series	Max Depth (in)	% Clay on Surface	K	T	OM %			
(IaA) - Iotla Sandy Loam, 0 to 3 percent slopes	60	12-18	0.2	5	2-5			
(EwE) - Evard-Cowee Complex, 2 to 95 percent slopes	65	5-20	0.24	5	1-5			
(HcC2) -Hayesville Clay Loam, 2 to 60 percent slopes	62	10-25	0.24	4	1-3			
(HeD) -Hayesville-Evard Complex, 2 to 60 percent slopes	62	5-25	0.24	5	1-5			

NRCS, USDA, Official Soil Series Descriptions (http://soils.usda.gov/soils/technical/classification/osd/index.html)

General taxonomy of Site soils:

Iotla:

The Iotla series (IaA) consists of very deep, somewhat poorly-drained soils with moderately rapid permeability on floodplains. They formed in loamy, recent alluvium. Slopes range from 0 to 3 percent.

Evard-Cowee:

The Evard-Cowee complex (EwE) is composed of very deep, well-drained, moderately permeable soils on ridges and side slopes. They formed in residuum affected by soil creep in the upper part and weathered from felsic to mafic, igneous and high-grade metamorphic rocks. Slopes range from 2 to 95 percent.

Hayesville:

The Hayesville Series (HcC2 and HeD) consists of very deep well-drained soils on gently sloping to very steep ridges. They most commonly formed in residuum weathered from igneous and high-grade metamorphic rocks such as granite, granodiorite, mica gneiss and schist; but in some places formed from thickly-bedded metagraywacke and metasandstone. On steeper slopes the upper part of some pedons may have some colluvial influence. Slopes range from 2 to 60 percent.

2.2 Description of Species and Monitoring Protocol

The Site was planted in bottomland hardwood forest species in March and April 2006. The following tree species were planted in the restoration area:

Table 6. Tree Species Planted

	South Fork Hoppers Creek Restoration Site: Project No. D04006-4						
ID	Scientific Name	cientific Name Common Name					
1	Betula nigra	River Birch	FACW				
2	Fraxinus pennsylvanica	Green Ash	FACW				
3	Platanus occidentalis	Sycamore	FACW-				
4	Quercus phellos	Coastal Willow Oak	FACW-				
5	Quercus rubra	Northern Red Oak	FACU				
6	Quercus michauxii	Swamp Chestnut Oak	FACW-				
7	Liriodendron tulipifera	Yellow Poplar	FAC				
8	Celtis laevigata	Sugar Berry	FACW				
9	Diospyrus virginiana	Persimmon	FAC				
10	Nyssa sylvatica	Blackgum	FAC				

The following monitoring protocol was designed to predict vegetative survivability. Ten plots were established on the South Fork Hoppers Site, to monitor approximately 1.5 percent of the site. Six plots were established in areas that included both the wetlands and stream buffer. The remaining four plots were located adjacent to the newly constructed streambed to monitor the vegetation in the stream restoration buffer. The plots were randomly located within each zone and randomly oriented within the wetland restoration area.

Plot construction involved using metal fence posts at each of the four corners to clearly and permanently establish the area that was to be sampled. Then ropes were hung connecting all four corners to help in determining if trees close to the plot boundary were inside or outside of the plot. Trees right on the boundary and trees just outside of the boundary that appear to have greater than 50 percent of their canopy inside the boundary were counted inside the plot. A piece of white PVC pipe ten feet tall was placed over the metal post on one corner to facilitate visual location of plot throughout the five-year monitoring period.

All of the planted stems inside the plot were flagged with orange flagging and marked with a three-foot tall piece of half-inch PVC to identify them as the planted stems (vs. any colonizers) and to help in locating them in the future. Each stem was then tagged with a permanent, numbered aluminum tag.

2.3 Vegetation Success Criteria

The interim measure of vegetative success for the South Fork Hoppers Mitigation Plan will be the survival of at least 320, 3-year old planted trees per acre at the end of Year 3 of the monitoring period. The final vegetative success criteria will be the survival of 260, 5-year old planted trees per acre at the end of Year 5 of the monitoring period.

Up to 20 percent of the Site species composition may be comprised of invaders. Remedial action may be required should these (ie. Loblolly pine, red maple, sweet gum, etc.) volunteer species present a problem and exceed 20 percent composition.

2.4 Results of Vegetative Monitoring

The following tables present stem counts for each of the monitoring plots. Each planted tree species is identified down the left column, and each plot is identified across the top row. The numbers on the top row correlate to the ID column of the previous table. Trees are flagged in the field on an as-needed basis before the flags degrade. Flags are utilized, because they will not interfere with the growth of the tree. Volunteer species are also flagged during this process.

Table 7. Year 2 Stem Counts for Each Species Arranged by Plot

South Fork Hoppers Creek Restoration Site: Project No. D04006-4									Initial Totals	Year 1 Totals	Year 2 Totals	% Survival		
				Yea	r 2 Plo	ot Cou	ınts							
Tree Species	1	2	3	4	5	6	7	8	9	10				
Betula nigra	2	0	0	0	0	0	0	0	0	0	2	2	2	100.0
Fraxinus pennsylvanica	9	1	4	3	0	2	0	0	0	4	24	25	23	95.8
Platanus occidentalis	2	0	8	4	5	10	0	0	3	0	30	31	32	106.7
Quercus phellos	4	0	4	8	4	1	0	0	7	4	25	32	32	128.0
Quercus rubra	0	0	0	0	0	0	0	0	2	0	2	3	2	100.0
Quercus michauxii	0	0	0	0	4	0	0	0	0	7	7	10	11	157.1
Liriodendron tulipiferra	0	7	0	0	0	2	6	5	4	0	0	27	24	0.0
Celtis laevigata	0	0	0	0	3	0	0	0	0	0	18	4	3	16.7
Diospyros virginiana	0	0	0	0	0	0	5	0	0	0	16	5	5	31.3
Nyssa sylvatica	0	6	0	0	0	0	5	10	0	0	10	22	21	210.0
Quercus spp.											19	0	0	0.0
Unknown											12	0	0	0.0
Stems/plot	17	14	16	15	16	15	16	15	16	15	165	161	155	93.9
Stems/acre	680	560	640	600	640	600	640	600	640	600	620	average		-

Average Stems/Acre for Year 2: 620

Range of Stems/Acre for Year 2: 560-680

The data reflects that the overall site is on a trajectory to meet the minimum success interim criteria of 320 trees per acre by the end of year three and the final success criteria of 260 trees per acre by the end of year five.

Volunteer species will also be monitored throughout the five-year monitoring period. Table 8 depicts the most commonly found woody volunteer species.

Table 8. Volunteers within Wetland Restoration Area

	South Fork Hoppers Creek Restoration Site: Project No. D04006-4							
ID	Scientific Name	Common Name	FAC Status					
1	Liquidambar styraciflua	Sweetgum	FAC+					
2	Acer rubrum	Red Maple	FAC					

Few volunteer woody species were observed in any of the vegetation plots, and were deemed too small to tally. If these trees persist into the next growing season, they will be flagged and added to the overall stems per acre assessment of the site. Red Maple (*Acer rubrum*) was the most common volunteer, though Sweetgum (*Liquidambar styraciflua*) was also observed.

2.5 Vegetation Observations

After construction of the Site, a permanent ground cover seed mixture of Virginia wild rye (*Elymus virginicus*), switch grass (*Panicum virgatum*), and fox sedge (*Carex vulpinoidea*) was broadcast on the Site at a rate of 10 pounds per acre. These species were present on the Site. Hydrophytic herbaceous vegetation, including rush (*Juncus effusus*), spike-rush (*Eleocharis obtusa*), boxseed (*Ludwigia* sp.) and sedge (*Carex* sp.) were observed across the Site, particularly in areas of periodic inundation. The presence of these herbaceous wetland plants helps to confirm the presence of wetland hydrology on the Site.

Quite a few weedy species, including kudzu and lespedeza, were observed on the Site, though currently none seem to be posing any problems. Because both kudzu and lespedeza can very quickly affect the survivability of the planted stems, these weedy species should be treated aggressively to prevent any major mortality.

2.6 Vegetation Photos

Photos of the project showing the on-site vegetation are included in Appendix A of this report.

3.0 STREAM MONITORING

3.1 Description of Stream Monitoring

To document the stated success criteria, the following monitoring program was instituted following construction completion on the South Fork Hoppers Restoration Project:

Bankfull Events: The occurrence of bankfull events within the monitoring period was documented by the use of a crest gauge and photographs. One crest gauge was installed on the floodplain within 10 feet of the restored channel, near As-built Station 176+00. The crest gauge recorded the highest watermark between Site visits and was checked at each Site visit to determine if a bankfull event had occurred. Photographs were taken to document the occurrence of these bankfull events and are included in Appendix A.

Cross-sections: Two permanent cross-sections were installed per 1,000 LF of stream restoration work, with one located at a riffle cross-section and one located at a pool cross-section. Sixteen total cross sections were established. Each cross-section was marked on both banks with permanent pins to establish the exact transect used. A common benchmark was used for cross-sections and consistently referenced to facilitate comparison of year-to-year data. The annual cross-sectional survey included points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections were classified using the Rosgen stream

classification system (Rosgen, 1994). Permanent cross-sections for 2007 (Year 2) were surveyed in October 2007 and are included in Appendix B.

Longitudinal Profiles: A partial longitudinal profile was surveyed for 2007 (Year 2). The profile was conducted for approximately 3,550 LF of South Fork Hoppers Creek, beginning upstream of the bridge at As-built Station 125+09 and continuing down to As-built Station 160+09 (natural migration of the thalweg accounts for the additional 50 feet surveyed within the As-built Stations). Measurements included thalweg, water surface, bankfull, and top of low bank. Each of these measurements was taken at the head of each feature (e.g., riffle, pool, glide). In addition, maximum pool depth was recorded. All survey was tied to a single permanent benchmark. This data is included in Appendix B of this report.

Bed Material Analysis: Pebble counts were conducted for the permanent cross sections (100 counts per cross section) on the Site. Pebble count data was plotted on a semi-log graph and are included in Appendix B.

Photo Reference Stations: Photographs were used to visually document restoration success. Seventy reference stations were established to document conditions at the constructed grade control structures across the Site. These photos are provided in Appendix A. Additional photo stations were established at each of the sixteen permanent cross-sections and hydrologic monitoring stations. Each streambank was photographed at each permanent cross-section photo station. For each streambank photo, the photo view line followed a survey tape placed across the channel, perpendicular to flow (representing the cross-section line). The photograph was framed so that the survey tape is centered in the photo (appears as a vertical line at the center of the photograph), keeping the channel water surface line horizontal and near the lower edge of the frame. These photos are presented along with the cross-section monitoring data in Appendix B.

The GPS coordinates of each photo station were noted as additional reference to ensure the same photo location was used throughout the monitoring period. These stations are included in the As-built Plan Sheets in Appendix C. Reference photos were taken once per year.

3.2 Stream Restoration Success Criteria

The approved Mitigation Plan requires the following criteria be met to achieve stream restoration success:

- Bankfull Events: Two bankfull flow events must be documented within the five-year monitoring period. The two bankfull events must occur in separate years.
- *Cross-sections:* There should be little change in as-built cross-sections. If changes to channel cross-section take place, they should be minor changes representing an increase in stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio).
- Longitudinal Profiles: The longitudinal profiles should show that the bedform features are remaining stable (not aggrading or degrading). The pools should remain deep with flat water surface slopes and the riffles should remain steeper and shallower than the pools.
- Bed Material Analysis: Pebble counts should indicate maintenance of bed material.
- Photo Reference Stations: Photographs will be used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation and effectiveness of erosion control measures. Photos should indicate the absence of developing bars within the channel, no excessive bank erosion or increase in channel depth over time, and maturation of riparian vegetation. These stations are included in the As-built Plan Sheets in Appendix C.

3.3 Bankfull Discharge Monitoring Results

The on-site crest gauge documented the occurrence of five bankfull flow events during the second year (2007) of the post-construction monitoring period (Table 9). Inspection of site conditions following these events revealed visual evidence of out-of-bank flow, confirming the crest gauge reading. The largest stream flow documented by the crest gauge during Year 2 of monitoring was approximately 1.63 feet (19.56 inches) above the bankfull stage. Photos of these crest gauge readings are contained in Appendix A, except for September 17, 2007. There was a camera malfunction on this date and photos were not able to be saved.

Table 9. Verification of Bankfull Events

South Fork Hoppers Creek Restoration Site: Project No. D04006-4							
Date of Data Collection	Date of Occurrence of Bankfull Event	Method of Data Collection	Gage Height (feet)				
1/16/2007	Unknown	Crest gauge	0.73				
3/13/2007	Unknown	Crest gauge	1.13				
5/22/2007	Unknown	Crest gauge	0.10				
7/17/2007	Unknown	Crest gauge	0.08				
9/17/2007	Unknown	Crest gauge	1.63				

3.4 Stream Monitoring Data and Photos

A photo log of the project showing each of the 70 permanent photo locations is included in Appendix A of this report. Survey data and photos from each permanent cross-section are included in Appendix B of this report.

3.5 Stream Stability Assessment

Table 10 presents a summary of the results obtained from the visual inspection of in-stream structures performed during Year 2 of post-construction monitoring. The percentages noted are a general overall field evaluation of the how the features were performing at the time of the last photo point survey on November 5, 2007. These percentages are solely based on the field evaluator's visual assessment at the time of the site visit.

Visual observations of the various structures throughout the Year 2 growing season indicated that all structures were functioning as designed and holding their elevation grade. Cover logs placed in meander pool areas allowed scour to keep pools deep and provide cover for fish. Root wads placed on the outside of meander bends provided bank stability and in-stream cover for fish and other aquatic organisms. Isolated pockets of scour were observed along the upstream end of a few rootwads located at stations 124+50, 126+75, and 133+50. The scour appears to have taken place before vegetation had time to become established along the streambanks.

Table 10. Categorical Stream Feature Visual Stability Assessment

South Fork Hoppers Creek Restoration Site: Project No. D04006-4							
	Performance Percentage						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05	
Riffles	100%	100%	100%				
Pools	100%	100%	100%				
Thalweg	100%	100%	100%				
Meanders	100%	100%	100%				
Bed General	100%	100%	100%				
Vanes / J Hooks etc.	100%	100%	100%				
Rootwads and Boulders	100%	100%	95%				

3.6 Cross-section, Longitudinal Profile, and Bed Material Analysis Monitoring Results Cross Sections

Year 2 cross-section monitoring data for stream stability were collected during October and November 2007 and compared to as-built conditions and Year 1 data (collected October 2006).

The sixteen permanent cross-sections along the restored channels (eight located across riffles and eight located across pools) were re-surveyed to document stream dimension at the end of monitoring Year 2. Cross-sections are provided in Appendix B, and data from the cross-sections are summarized in Appendix E. The cross-sections show that there has been minor adjustment to stream dimension within the last year.

A few cross-sections have aggraded, including sections 2, 6, 11, and 16. Cross-section 2, located near the downstream end of the Site, is likely aggrading in response to a beaver impoundment approximately 120 feet downstream of the project limits. The impoundment is slowing stream flow, which has resulted in the accumulation of fine sediment within the project area immediately upstream. Cross-sections 6 and 11 are located across pools found at the apex of a meander bend. Survey data from these sections indicate the aggradation on point bar features on the inside bank of the meander bend. Flow through a meander bend possesses higher conveyance velocity along its boundary with the outer bank of the bend, and lower flow velocity along its boundary with the bend's inner bank. As flow velocity reduces, its sediment transport capacity also reduces, causing flow to drop some of its transported sediment as it slows down. Point bar formation along the inside of a meander bend indicates flow velocity vectors occurring as designed, and is therefore expected. Cross-section 16 is located at the most upstream extent of the Site and is receiving a large sediment supply from its contributing watershed. All monitored cross-sections fell within the quantitative parameters defined for "C" type channels.

Longitudinal Profiles

The Year 2 longitudinal profile was conducted during October and November 2007. A representative 3,550 LF section of the channel was surveyed, beginning at As-built Station 125+09 and ending at As-built Station 160+09. Placement of the rock cross vanes upstream of the bridge as well as natural

migration of the thalweg accounts for the 50 LF discrepancy between the surveyed length and the as-built conditions. The longitudinal profile is included in Appendix B. A summary of parameters measured are provided in Appendix E. Please note that this summary represents only the portion of the project that was surveyed.

The representative longitudinal profile along the restored channel was resurveyed to document stream profile at the end of monitoring Year 2. Riffle slopes, pool-to-pool spacing and sinuosity changed very little within Reach 1 of South Fork Hoppers Creek. The values for Reach 2 showed little change in pool-to-pool spacing and sinuosity, but a slight increase riffle slope. The change is a reflection of one riffle increasing in grade, thereby raising the mean riffle slope value. The majority of Reach 2 riffles were within the range of those documented in the As-Built survey.

Bed Material Analysis

Year 2 bed material samples were collected at each permanent cross-section during November 2007. Overall, bed material indicated coarser riffles and finer pools, however riffles showed a trend towards fining downstream of Pierce Road due to the backwater effects of the downstream beaver dam. Riffle cross-sections 1 and 3 had d50 of 0.15 mm and 0.7 mm, respectively, which corresponds to sand. The beaver dam causes the water to slow and fine particles to settle out of suspension, thus fining the riffle. Riffles begin to coarsen further upstream with a d50 of 7.5 mm at cross-section 5. Upstream of Pierce Road all riffle cross-sections have a d50 corresponding to very coarse gravel. Pools throughout the project site are dominated by sand. All pebble count data is provided in Appendix B.

4.0 HYDROLOGY MONITORING

Weather station data from the for NRCS National Climate and Water Center (Marion WETS Station in McDowell County – NC 5340) and the USGS Water Data for North Carolina (USGS 03451500 French Broad River at Asheville, NC) were used in conjunction with a manual rain gauge located on the Site to document precipitation amounts. For the 2007 growing season, November 2006 through January 2007 rainfall was normal or above normal; however from February 2007 through October 2007 rainfall was recorded as below normal for greater than 55 percent of the time.

The restoration plan for the Site specifies that eight monitoring gauges (five automated and three manual) would be established across the restored Site. These eight monitoring gauges were installed during early-March 2006 to document water table hydrology in all required monitoring locations. The wells were located across the site to document the variability in site hydrology, and the locations of monitoring gauges are shown on the as-built plan sheets. As stated in the Restoration Report, the well monitoring data should show that the site has been saturated within 12 inches of the soil surface for at least 7 percent of the growing season, and that the site has exhibited an increased frequency of flooding.

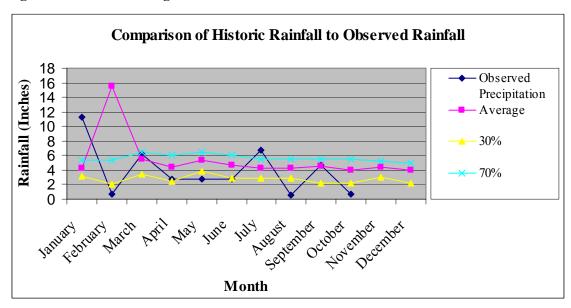

Hydrologic monitoring results are shown in Table 11, 12 and Figure 5.

Table 11. Comparison of Historic Rainfall to Observed Rainfall (Inches)

South Fork Hoppers Creek Restoration Site: EEP Contract No. D04006-4						
Month	Average ^A	30% ^A	70% ^A	Observed 2007 Precipitation		
January	4.23	3.10	5.35	11.2		
February	15.46	2.09	5.36	0.71 ^B		
March	5.43	3.45	6.52	6.15		
April	4.41	2.54	6.00	2.79		
May	5.40	3.88	6.41	2.70		
June	4.70	2.91	5.98	2.75		
July	4.28	2.87	5.53	6.79		
August	4.24	2.88	5.44	0.53		
September	4.48	2.22	5.45	4.68		
October	3.95	2.17	5.43	0.70		
November	4.43	2.96	5.29	-		
December	3.96	2.20	5.00	-		

(NRCS National Climate and Water Center, 2000 and USGS, 2007)

Figure 5. Historic Average vs. Observed Rainfall

In 2007, six of the eight wells met the success criteria specified by the Restoration Plan. Automated wells (AW) 1, 2, and 5 met the soil saturation criteria throughout the entire growing season, as they did in 2006. Manual well 3 (MW3), also, met the criteria throughout most of the growing season. AW3 met the criteria more often and for longer consecutive periods than in 2006. AW4 met the criteria for a greater number of consecutive days than in 2006; however, the cumulative days were the same and the

^AData in these columns presented exactly as reported by the NRCS National Climate and Water Center.

^BMonthly on-site rainfall data unavailable, so total monthly rainfall data was calculated using the nearest USGS rain gauge data (USGS 03451500 FRENCH BROAD RIVER AT ASHEVILLE, NC) to the project site. (USGS, 2007)

instances that the criteria were met were more often than in 2006. MW1 and MW2 did not meet the criteria in 2007 or 2006, nor did the reference wells, except for cumulative days in Year 2 for REF1.

Table 12. Comparison of Hydrologic Monitoring Results for Year 2 and Year 1

South Fork Hoppers Creek Restoration Site: EEP Contract No. D04006-4							
Monitoring Station	Most Consecutive Days Meeting Criteria ¹			Days Meeting teria ²	Number of Instances Meeting Criteria ³		
	Year 2 Monitoring	Year 1 Monitoring	Year 2 Monitoring	Year 1 Monitoring	Year 2 Monitoring	Year 1 Monitoring	
AW1	222 (100%)	222 (100%)	222 (100%)	222 (100%)	1	1	
AW2	222 (100%)	222 (100%)	222 (100%)	222 (100%)	1	1	
AW3	133 (60%)	75 (34%)	218 (98%)	178 (77%)	2	6	
AW4	33 (15%)	16 (7%)	58 (26%)	58 (26%)	13	12	
AW5	222 (100%)	175 (79%)	222 (100%)	190 (86%)	1	2	
MW1 ⁴	< 5%	< 5%	~ 5%	~ 10%	-	-	
MW2 ⁵	< 5%	< 5%	~ 5%	~ 10%	-	-	
MW3 ⁴	> 95%	> 75%	~ 100%	~ 90%	-	-	
REF1 ⁶	5 (2%)	8 (4%)	26 (12%)	9 (4%)	8	1	
REF2 ⁶	4 (2%)	3 (1%)	13 (6%)	4 (2%)	4	2	

Indicates the most consecutive number of days within the monitored growing season with a water table less than 12 inches form the soil surface.

5.0 BENTHIC MACROINVERTEBRATE MONITORING

5.1 Description of Benthic Macroinvertebrate Monitoring

Benthic macroinvertebrate monitoring was conducted in conjunction with the South Fork Hoppers Creek Restoration Project. Because of seasonal fluctuations in populations, macroinvertebrate sampling must be consistently conducted in the same season. Benthic sampling for the Site is conducted during the month of January, therefore this report summarizes the benthic samples collected during the first year post-construction monitoring phase.

The sampling methodology followed the Qual 4 method listed in NCDWQ's <u>Standard Operating Procedures for Benthic Macroinvertebrates</u> (2006). Field sampling was conducted by Christine Miller and Anna Cathey of Baker. Laboratory identification of collected species was conducted by Chris Outlaw and Bobby Louque, biologists with the City of Durham.

² Indicates the cumulative number of days within the monitored growing season with a water table less than 12 inches from the soil surface.

Indicates the number of instances within the monitored growing season when the water table rose to less than 12 inches from the soil surface.

Groundwater gauges MW1 and MW3 are manual gauges. Hydrologic parameters are estimated based on observations and correlation with automated gauge AW1.

⁵ Groundwater gauge MW2 is a manual gauge. Hydrologic parameters are estimated based on observations and correlation with automated gauge AW2.

Reference ground water gauges are located on an Unnamed Tributary to Little Silver Creek in Morganton, NC

Benthic macroinvertebrate samples were collected at two sites on the South Fork of Hoppers Creek site on January 16 and 17, 2007 and one reference site located upstream of the project on January 16, 2007. Site 1, the reference site, was located approximately 200 LF upstream of the conservation easement boundary on South Fork Hoppers Creek, Site 2 was located just upstream of Pierce Road, and Site 3 was located upstream of the downstream conservation easement boundary. Figure 1 illustrates the sampling site locations.

Benthic macroinvertebrates were collected to assess quantity and quality of life in the creek. In particular, specimens belonging to the insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are useful as an index of water quality. These groups are generally the least tolerant to water pollution and therefore are very useful indicators of water quality. Sampling for these three orders is referred to as EPT sampling.

Habitat assessments using NCDWQ's protocols were also conducted at each site. Physical and chemical measurements including water temperature, percent dissolved oxygen, dissolved oxygen concentration, pH, and specific conductivity were recorded at each site. The habitat assessment field data sheets are presented in Appendix F. Photographs were taken at Sites 1 through 3 to document stream and bank conditions at the time of sampling. The Photograph Log is also presented in Appendix F.

5.2 Benthic Macroinvertebrate Sampling Results and Discussion

A comparison between the pre- and post-construction monitoring results is presented in Table 13 with complete results presented in Appendix F.

Table 13. Pre-restoration vs. Post-restoration Benthic Macroinvertebrate Sampling Data

South Fork Hoppers Creek Restoration Site: EEP Contract No. D04006-4								
Metric	Site 1 Reference		Site 2 U/S Hoppers		Site 3 D/S Hoppers			
	Pre 1/11/05	Post 1/17/07	Pre 1/11/05	Post 1/16/07	Pre 1/12/05	Post 1/16/07		
Total Taxa Richness	36	50	31	43	27	40		
EPT Taxa Richness	23	21	21	15	14	13		
Total Biotic Index	3.15	3.47	3.03	5.58	3.03	5.53		
EPT Biotic Index	2.62	3.17	2.56	4.50	2.33	3.93		
Dominance in Common (%)	N/A	N/A	74	23	58	23		
Baetidae/EPT Taxa (%)	0.0	0.0	0.0	13.3	0.0	7.7		
Total Shredder/Scraper Index	5/9	8/7	5/8	7/7	6/5	2/5		
EPT Shredder/Scraper Index	3/7	4/3	4/6	1/4	4/3	1/2		
Habitat Assessment Rating	94	84	74	86	53	82		
Water Temperature (°C)	N/A	7.0	N/A	12.0	N/A	11.4		
% Dissolved Oxygen (DO)	N/A	54.7	N/A	35.7	N/A	29.8		
DO Concentration (mg/l)	N/A	6.61	N/A	3.87	N/A	3.25		
pН	N/A	6.20	N/A	6.30	N/A	6.03		
Conductivity (µmhos/cm)	N/A	40	N/A	40	N/A	50		

At Site 1, the reference site, the post-construction community structure appears similar to that observed during the pre-construction monitoring period. Overall taxa richness increased in the post-construction sample and there was a marginal decrease in EPT taxa richness. Several of the EPT species that were common or abundant in the pre-construction sample, such as *Tallaperla* spp., *Stenonema pudicum*, *Diplectrona modesta*, and *Diploperla duplicata* (tolerance values of 1.2, 2.0, 2.2, and 2.7, respectively) were also common or abundant in the post-construction sample. *Dicranota* spp., which has a tolerance

value of 0.0, was not represented in the pre-construction sample but was common in the post-construction sample. These indicators show that the communities are stable and water quality is adequate to support intolerant species.

Site 2, which underwent complete restoration, exhibited increased total taxa richness but decreased EPT taxa richness. EPT abundance was 82 in the pre-construction sample and 84 in the post-construction sample, which indicates that EPT diversity has decreased. The increase in biotic indices from 2.56 to 4.50 indicates that the existing communities are comprised of more tolerant species. This is a typical response after a major disturbance to habitat such as the in-stream construction techniques implemented on Site 2. Thirteen percent of EPT taxa in the post-construction sample were Baetidae species, which are part of the scraper functional feeding group. The riparian buffer is non-existent along the newly constructed reach, allowing maximum light penetration for increased photosynthetic activity, thus producing an abundant food source (periphyton). Periphyton is an excellent food source for scrapers. No Baetidaes were present in the pre-construction sample, which was taken when the sampling site had an adequate forested buffer.

Currently Site 2 has 23 percent Dominance in Common (DIC) compared to the reference site, indicating that 23 percent of the dominant communities at the reference site are dominant at Site 2. In preconstruction conditions, Site 2 had a DIC of 74 percent. This indicates that post-construction recolonization from refugia upstream (represented at Site 1) has begun but that the communities in Site 1 and 2 are not as similar as they were during pre-construction conditions. It is anticipated that improvements in biotic indices and an increase in DIC will be seen in future monitoring reports as the project and buffer matures and as communities continue to recolonize.

Site 3 also underwent total restoration. The overall taxa richness increased in the post-construction sample but the EPT Taxa richness decreased slightly. The EPT biotic index increased from 2.33 to 3.93. This indicates that the EPT species in this sample were more tolerant than during the pre-construction conditions. *Neophylax mitchelli* (tolerance value of 0.1) was abundant in the post-construction sample, which indicates that water quality is adequate to support intolerant species. Post-construction shredder taxa were decreased from the pre-construction sample. These organisms feed on partially decomposed organic matter such as sticks and leaf packs, a rare habitat (see Habitat Assessment Results). The decrease in sensitive communities and lack of shredders are common responses after a major disturbance to habitat such as the in-stream construction techniques implemented at Site 3. It is anticipated that, as the project matures, shredder populations will increase as more habitat in the form of snags, logs, and leaf packs become available.

Currently Site 3 has 23 percent DIC with the reference site. In pre-construction conditions, Site 3 had a DIC of 58 percent. This indicates that recolonization post-construction from refugia upstream (represented at Site 1) has initialized but has not reached pre-construction conditions. It is anticipated that improvements in biotic indices and an increase in Dominance in Common will be seen in future monitoring reports as the project and buffer matures and as communities continue to recolonize.

5.3 Habitat Assessment Results and Discussion

Site 1, the reference site, received an 84 on the Habitat Assessment Field Data Sheet. The site exhibited excellent riffle substrate, habitat diversity and shading. Riffles were mostly gravel and cobbles, moderately embedded with sand and the pool bottoms were sandy. Site 1 had a mature hardwood buffer with minimal breaks. No snags or logs were present within this section of the channel.

Site 2 received an 86 on the Habitat Assessment Field Data Sheet. The site exhibited excellent riffle pool sequencing, pattern, stability, and habitat diversity. Riffles were mostly gravel and cobbles, and the pool bottoms were silty. The riparian buffer of Site 2 could be classified as fallow field, with immature hardwood seedlings scattered throughout. Despite the absence of woody vegetation directly adjacent to the channel, organic habitat such as sticks and leaf packs were common throughout Site 2. The stick and

leaf pack material must have originated upstream of the project area, within the reference reach. It is anticipated that as the project and buffer continues to mature, habitat will continue to improve and diversify.

Site 3 received an 82 on the Habitat Assessment Field Data Sheet. The site exhibited excellent riffle pool sequencing, pattern and stability. Riffles were mostly gravel and cobbles, moderately embedded with sand, and the pool bottoms were silty. Like Site 2, the riparian buffer of Site 3 could be classified as fallow field, with immature hardwood seedlings scattered throughout. The riparian vegetation was virtually non-existent and therefore there were few organic contributions to the stream. The lack of organic habitats is likely the cause for the decreased shredder communities from pre-construction monitoring to post-construction monitoring. It is anticipated that as the riparian buffer becomes established, the shredders from the upstream reference site (Site 1) will begin to colonize throughout the restoration reach.

The restoration of pattern and dimension as well as the addition of several root wads, vanes, and armored riffles has enhanced the overall in-stream habitat throughout the restoration sites. Newly planted riparian vegetation has had minimal effect on in-stream habitat at Sites 2 and 3, however future contributions from planted riparian vegetation will be evident as the woody plant species mature. Contributions will include in-stream structures such as sticks, leaf packs, and root mats.

The physical and chemical measurements of water temperature, percent dissolved oxygen, dissolved oxygen concentration, pH, and specific conductivity at all sites were within established norms for Piedmont streams.

5.4 Photograph Log

The photograph log is attached as Appendix F. Photos P-1 and P-2 show the stable, well defined riffle pool sequence at Site 1. The break in the riparian buffer is visible in P-1, and the embedded substrate can be seen in P-2. Undercut banks are visible in the background of P-2. Photos P-3 and P-4 show the well defined riffle pool sequence at Site 2. Due to recent project construction, Site 2 lacks a mature forested canopy; however, young woody vegetation is present along the banks. Site 3 is shown in P-5 and P-6. Both photos show the stability of the channel as well as the riffle pool sequence. Woody transplants are visible both upstream and downstream in P-5 and P-6, respectively.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Vegetation Monitoring: Vegetation monitoring has documented the average number of stems per acre on site to be 620, which is a survival rate of greater than 93 percent, based on the initial planting count of 664 stems per acre. A maintenance herbicide application should be scheduled for next year to prevent the invasive kudzu and lespedeza, which is observed on the Site perimeter and sparsely throughout the restoration area, from spreading throughout the Site. The Site is on track to meet the interim vegetative success criteria of 320 3-year old planted stems specified in the Restoration Plan.

Stream Monitoring: The total length of stream channel restored on the Site was 7,229 LF. This entire length was inspected during Year 2 of the monitoring period (2007) to assess stream performance. Based on the data collected, all riffles, pools, and other constructed features along the restored channel are stable and functioning as designed. Isolated scour was noted along the outer bank of a few pools upstream of Pierce Road. This erosion appears to be stabilized since vegetation has established along the streambanks. Although a beaver impoundment downstream of the restored area is slowing velocities through the lower half of the project and causing fine sediments to settle out of the water column, it has not been removed because it is not affecting the stability of the channel. The lack of major problem areas along the length of the restored channel after the occurrence of five stream flow events larger than bankfull discharge further supports functionality of the design. It is expected that stability and in-stream

habitat of the system will improve in the coming years as permanent vegetation becomes more established, and that the Site will achieve the stream stability success criteria specified in the Restoration Plan.

Hydrologic Monitoring: Data collected during the 2007 growing season by the eight monitoring gauges showed that hydrology varied across the Site. The hydrology of these areas is expected to be more variable throughout the growing season, with the wettest periods during the early spring and late fall. Groundwater levels met hydrologic success criteria for six of the eight gauges. MW1 and MW2 did not meet the hydrologic success criteria specified in the Restoration Plan but did achieve hydroperiods similar to those achieved by the reference monitoring wells. Overall, the Site appears to be on track to meet the hydrologic success criteria specified in the Restoration Plan.

7.0 WILDLIFE OBSERVATIONS

Observations of deer, including a deer carcass, and raccoon tracks are common on the Site. During certain times of the year, frogs, turtles and fish have also been observed.

8.0 REFERENCES

- Allan, J.D. 1996. Stream Ecology: Structure and Function of Running Waters. Chapman and Hall Publishers. London, England.
- Newbold, J.D., D.C. Erman, and K.B. Roby. 1980. Effects of logging on macroinvertebrates in streams with and without buffer strips. Canadian Journal of Fisheries and Aquatic Sciences, Vol. 37, pp. 1076-1085.
- North Carolina Division of Water Quality (NCDWQ). 2001. Interim, Internal Technical Guide: Benthic Macroinvertebrate Monitoring Protocols for Compensatory Stream Restoration Projects.
- North Carolina Division of Water Quality (NCDWQ). 2006. Standard Operating Procedures for Benthic Macroinvertebrates.
- North Carolina State University. 2006. Aquatic Insect Collection Protocols for Stream Mitigation and Restoration Projects (401 Certification Projects).
- NRCS National Climate and Water Center. Marion WETS Station at McDowell County NC 5340 (1971-2000). FIPS/County(FIPS). 2002 ftp://ftp.wcc.nrcs.usda.gov/support/climate/wetlands/nc/37023.txt
- Radford, Albert E., Harry E. Ahles, and C. Ritchie Bell. 1968. Manual of the Vascular Flora of the Carolinas. The University of North Carolina Press, Chapel Hill, NC.
- Real-Time Data for North Carolina_ Precipitation USGS Water-Data Site Information for North Carolina. USGS 03451500 French Broad River at Asheville, NC. Retrieved on 2007-10-23 14:24:16 EDT http://waterdata.usgs.gov/nc/nwis/current/?type=precip&group_key=county_cd
- Resource Management Group, Inc. 1999. National List of Plant Species That Occur in Wetlands. Dickinson Press, Inc., Grand Rapids, MI.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.

- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Stone, M.K. and J.B. Wallace. 1998. Long-term recovery of a mountain stream from clear-cut logging: the effects of forest succession on benthic invertebrate community structure. Freshwater Biology, Vol. 39, pp. 151-169.
- U.S. Army Corps of Engineers. 1987. Corps of Engineers Wetlands Delineation Manual. Technical Report Y-87-1. U.S. Army Corps of Engineers, Waterways Experiment Station. Vicksburg, MS.
- United States Department of Agriculture, Natural Resources Conservation Service, Soil Series Descriptions, November 2006. http://soils.usda.gov/soils/technical/classification/osd/index.html
- Voshell, J. Reses Jr. 2002. A Guide to Common Freshwater Invertebrates of North America. The McDonald & Woodward Publishing Company. Blacksburg, Virginia
- Wallace, J.B. and M.E. Gurtz. 1986. Response of *Baetis* mayflies (Ephemeroptera) to catchment logging. The American Midland Naturalist, Vol. 115, pp. 25-41.
- Wetland Regulatory Assistance Program. Technical Notes ERDC TN-WRAP-00-02, July 2000. Website cited June 20, 2006. http://el.erdc.usace.army.mil/wrap/pdf/tnwrap00-2.pdf.

APPENDIX A PHOTO LOG

PROJECT ID PHOTOS

S. Fork Hoppers – PID 1

S. Fork Hoppers – PID 2

S. Fork Hoppers – PID 3

S. Fork Hoppers – PID 4

S. Fork Hoppers – PID 5

S. Fork Hoppers – PID 6

S. Fork Hoppers – PID 7

S. Fork Hoppers – PID 8

S. Fork Hoppers – PID 9

S. Fork Hoppers – PID 10

S. Fork Hoppers – PID 11

S. Fork Hoppers – PID 12

S. Fork Hoppers – PID 13

S. Fork Hoppers – PID 14

S. Fork Hoppers – PID 15

S. Fork Hoppers – PID 16

S. Fork Hoppers – PID 17

S. Fork Hoppers – PID 18

S. Fork Hoppers – PID 19

S. Fork Hoppers – PID 20

S. Fork Hoppers – PID 21

S. Fork Hoppers – PID 22

S. Fork Hoppers – PID 23

S. Fork Hoppers – PID 24

S. Fork Hoppers – PID 25

S. Fork Hoppers – PID 26

S. Fork Hoppers – PID 27

S. Fork Hoppers – PID 28

S. Fork Hoppers – PID 29

S. Fork Hoppers – PID 30

S. Fork Hoppers – PID 31

S. Fork Hoppers – PID 32

S. Fork Hoppers – PID 33

S. Fork Hoppers – PID 34

S. Fork Hoppers – PID 35

S. Fork Hoppers – PID 36

S. Fork Hoppers – PID 37

S. Fork Hoppers – PID 38

S. Fork Hoppers – PID 39

S. Fork Hoppers – PID 40

S. Fork Hoppers – PID 41

S. Fork Hoppers – PID 42

S. Fork Hoppers – PID 43

S. Fork Hoppers – PID 44

S. Fork Hoppers – PID 45

S. Fork Hoppers – PID 46

S. Fork Hoppers – PID 47

S. Fork Hoppers – PID 48

S. Fork Hoppers – PID 49

S. Fork Hoppers - PID 50

S. Fork Hoppers – PID 51

S. Fork Hoppers – PID 52

S. Fork Hoppers – PID 53

S. Fork Hoppers – PID 54

S. Fork Hoppers – PID 55

S. Fork Hoppers – PID 56

S. Fork Hoppers – PID 57

S. Fork Hoppers – PID 58

S. Fork Hoppers – PID 59

S. Fork Hoppers – PID 60

S. Fork Hoppers – PID 61

S. Fork Hoppers – PID 62

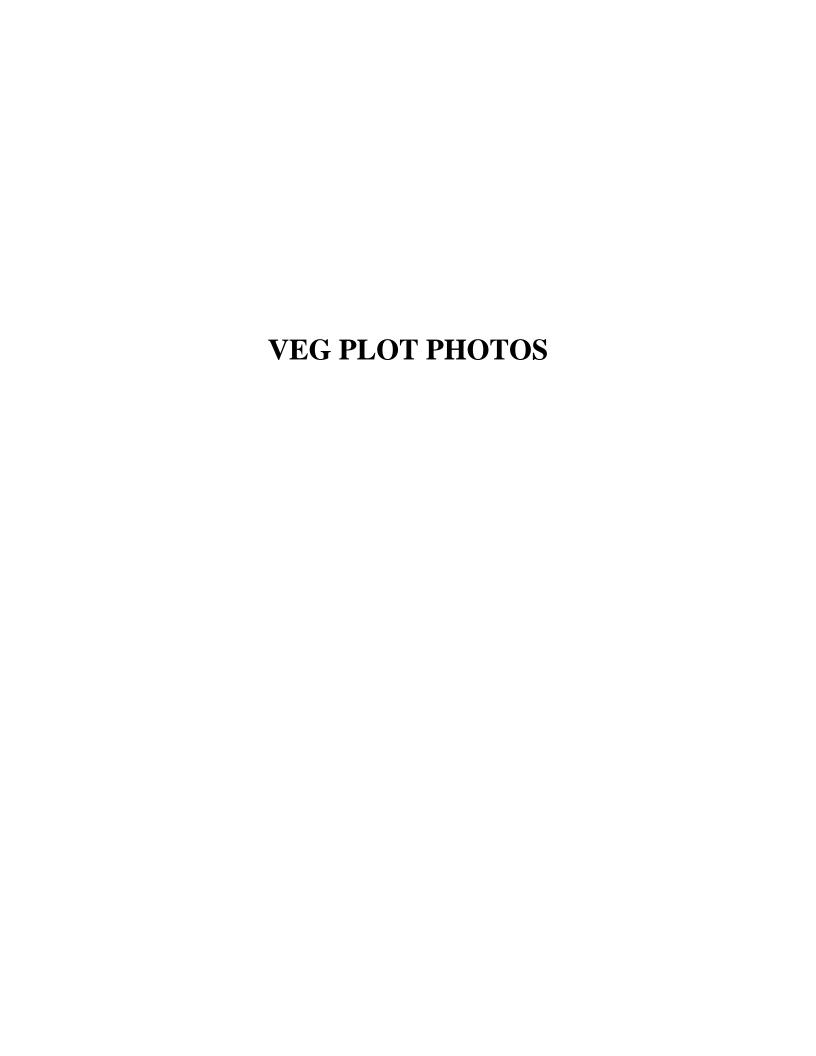
S. Fork Hoppers – PID 63

S. Fork Hoppers – PID 64

S. Fork Hoppers – PID 65

S. Fork Hoppers – PID 66

S. Fork Hoppers – PID 67


S. Fork Hoppers – PID 68

S. Fork Hoppers – PID 69

S. Fork Hoppers – PID 70

Veg Plot #1

Veg Plot #2

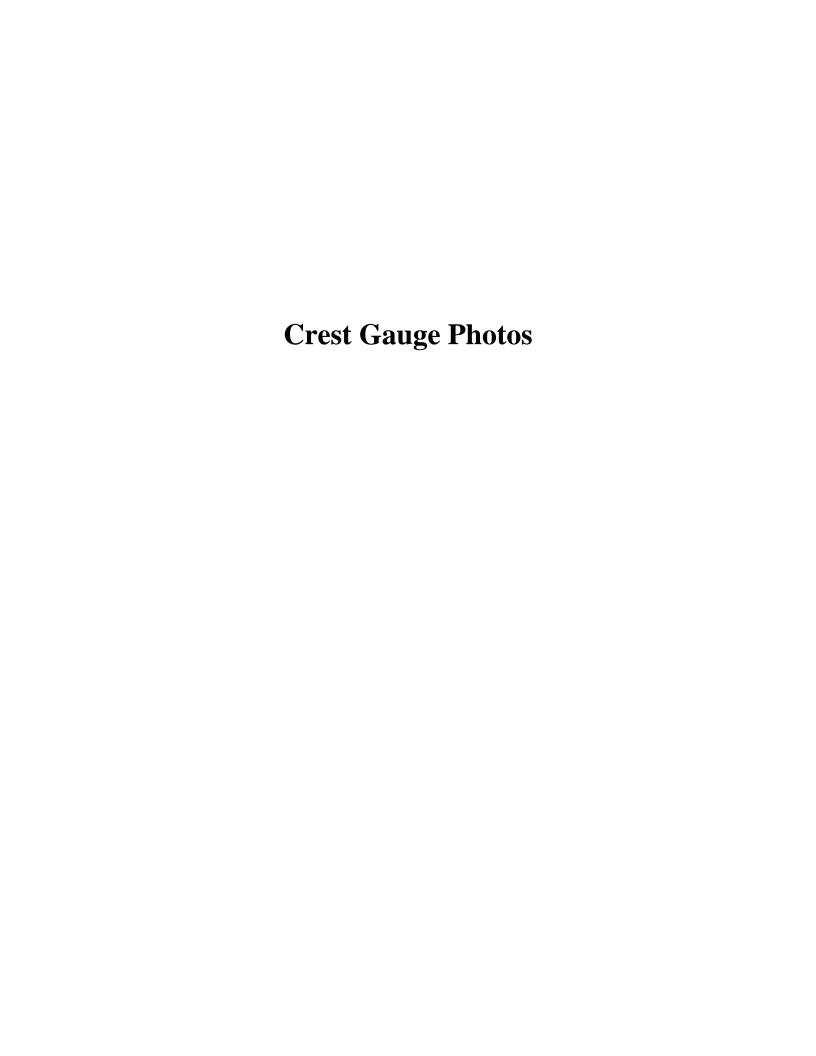
Veg Plot #3

Veg Plot #4

Veg Plot #5

Veg Plot #6

Veg Plot #7


Veg Plot #8

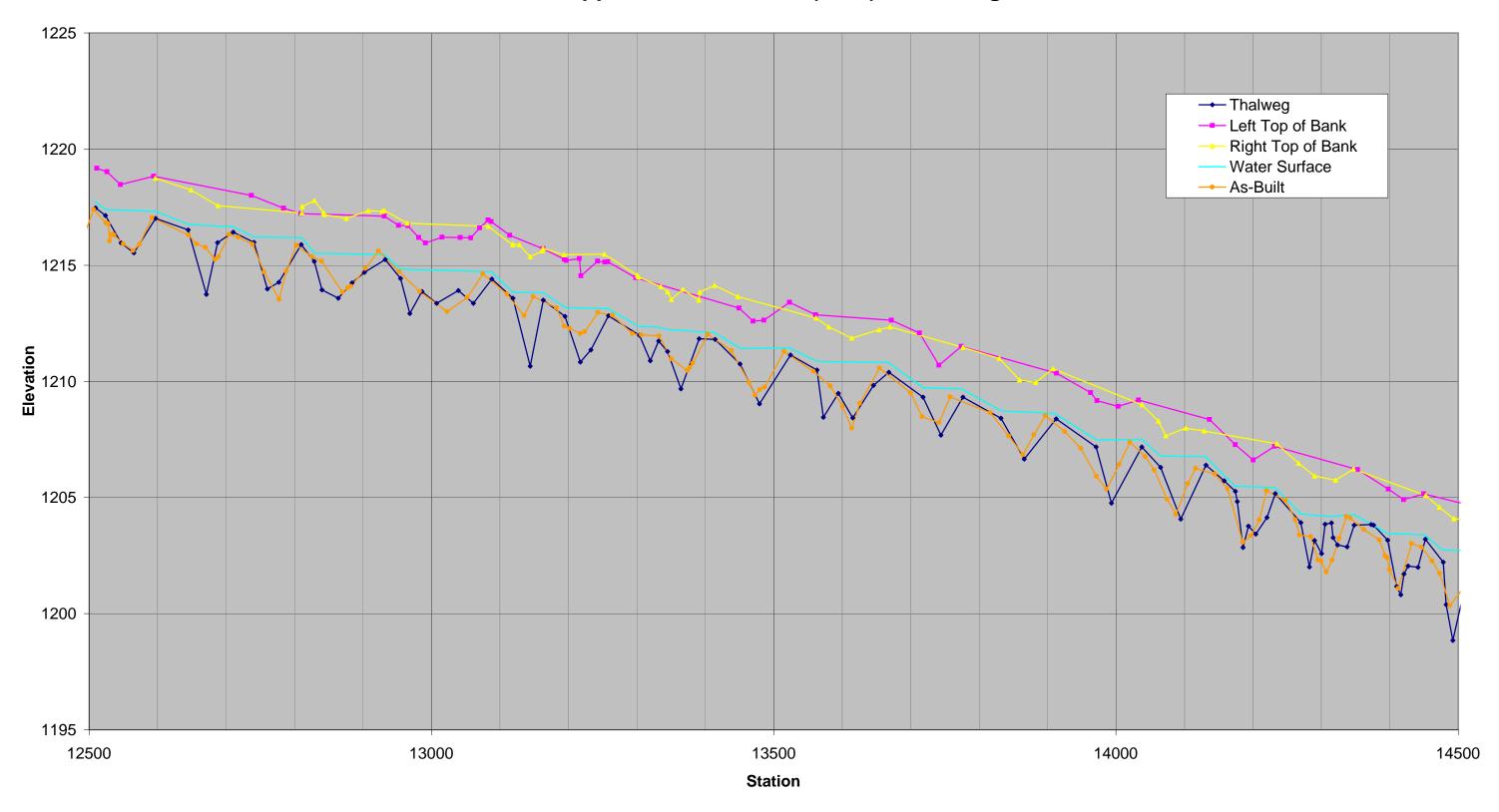
Veg Plot #9

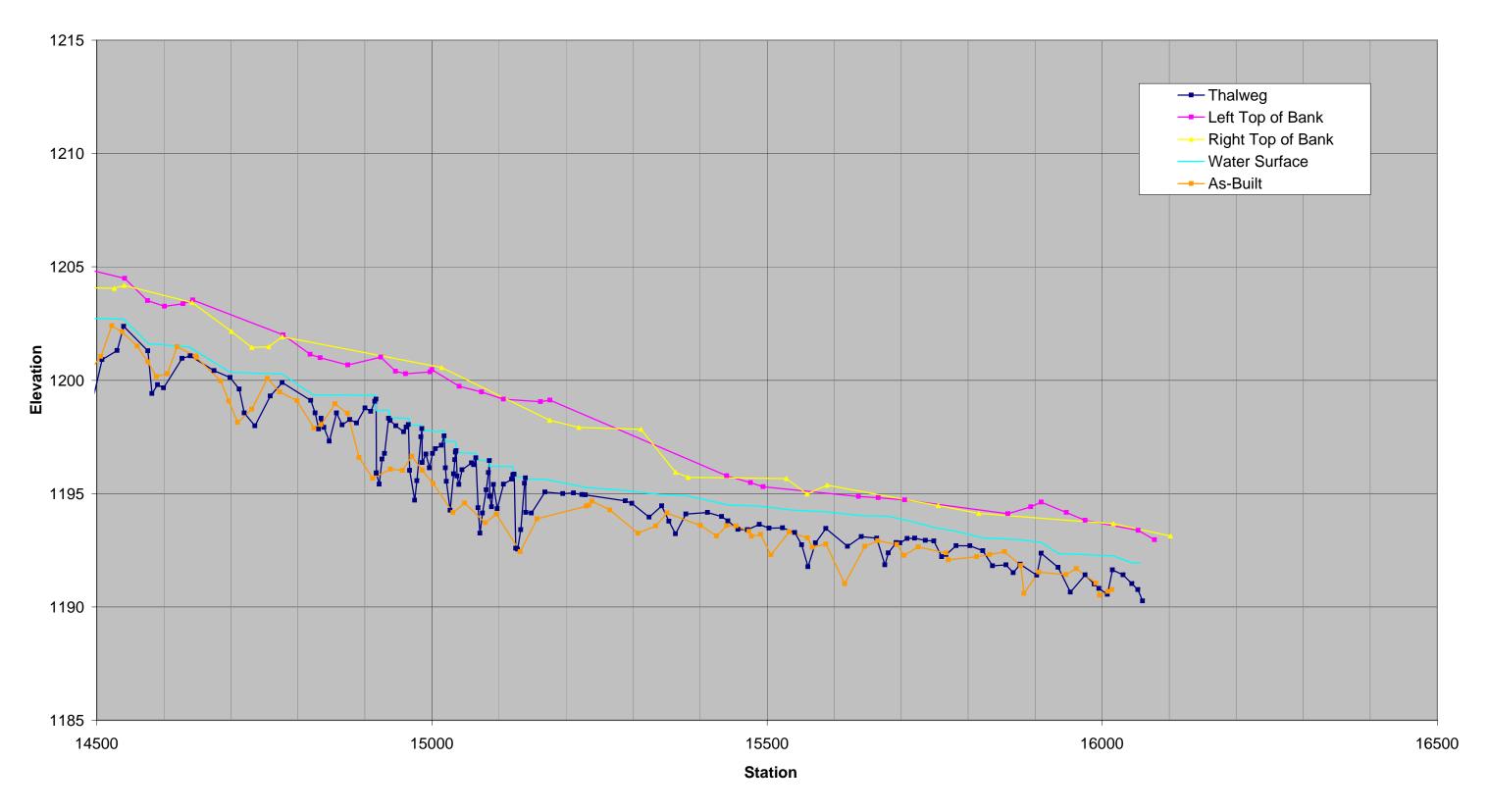
Veg Plot #10

CREST GAUGE PHOTOS OF BANKFULL

Crest Gauge – 1/16/07

Crest Gauge – 3/13/07

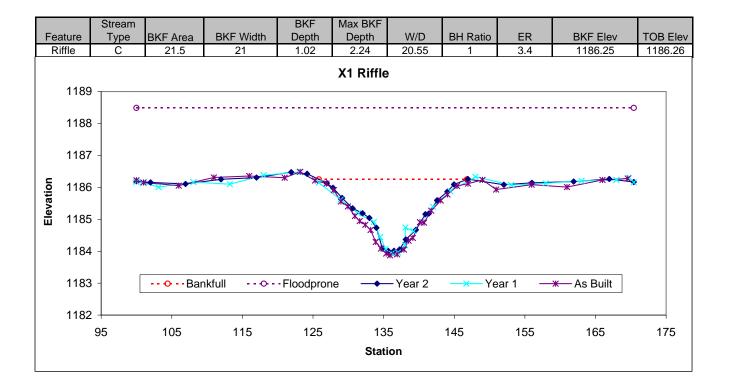

Crest Gauge – 5/22/07


Crest Gauge – 7/17/07

APPENDIX B STREAM MONITORING DATA

South Fork Hoppers Creek - Year 2 (2007) Monitoring Profile

South Fork Hoppers Creek - Year 2 (2007) Monitoring Profile

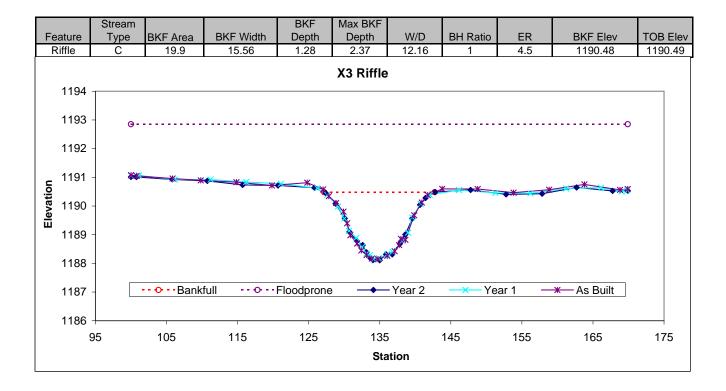


Looking at the Left Bank

Looking at the Right Bank

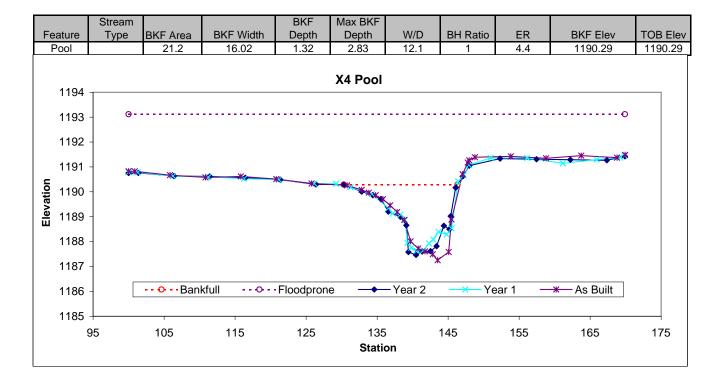
Looking at the Left Bank

Looking at the Right Bank


Feature	Strea Type		BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool	Турс	18.7	15.3	1.22	2.23	12.52	1	4.6	1185.87	1185.87
1189	9				X2 Pool					
118	8 -	Θ							о	
118	7 -						**	*	***	
1180	6 -	****	*	*	•		No.			
Elevation 118	5 -			*	***	*	•			
118	4 -									
118	3 -				ж					
118	2 -					<i>**</i>			1	
118	1 -	• oBanl	kfull •-	Floodpron	e <u></u>	-Year 2	<u> </u>	ear 1 -	─ * As Built	
118	ο ——	-	-	Г			Г	ı	T	
	95	105	115	125	135	5	145	155	165	175
					Statio	on				

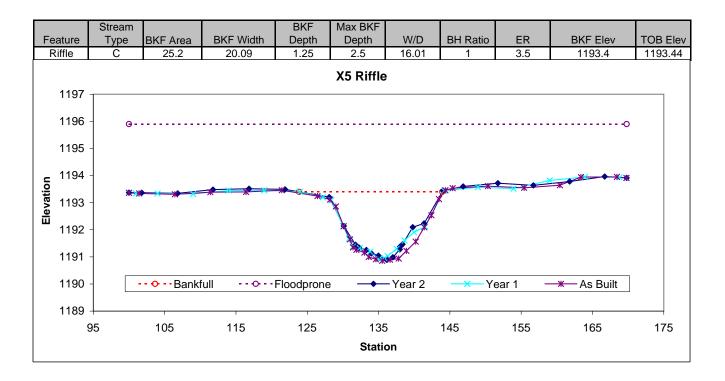
Looking at the Left Bank

Looking at the Right Bank



Looking at the Left Bank

Looking at the Right Bank



Looking at the Left Bank

Looking at the Right Bank

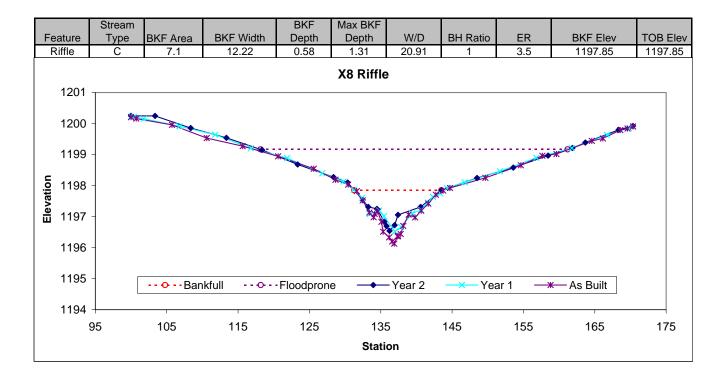
Looking at the Left Bank

Looking at the Right Bank

Type			Stream			BKF	Max BKF					
X6 Pool 1199 1197 1198 1191 1189 1187 95 105 115 125 135 145 155 165 175			Туре									TOB Elev
1199 1197 1198 1199 1199 1199 1199 1199	F	ool		51.2	31.33	1.63	3.92	19.16	1	2.3	1193.95	1193.96
1197 - 1195 - 1193 - 1191 - 1189 - 1187 - 95 105 115 125 135 145 155 165 175		1199					X6 Pool					
1193 - 1191 - 1189 O Bankfull O Floodprone Year 2 Year 1 As Built 95 105 115 125 135 145 155 165 175		1197	⊝- ·								Θ	
1191 - 1189	loi	1195	**		*******************************	%				*	** *	
1189 - Year 2 - Year 1 - X As Built 1187 - 95 105 115 125 135 145 155 165 175	Elevat	1193	_		*			WWW.XXXX	A STATE OF THE PARTY OF THE PAR			
1187		1191	_				****	ж				
95 105 115 125 135 145 155 165 175		1189	-	-	ull	Floodprone	-	Year 2	—×— Yea	ar 1 —→	K—As Built	
		1187	-		1		1		1	1	1	
Station		Ş	95	105	115	125	135	;	145	155	165	175
							Statio	on				

Looking at the Left Bank

Looking at the Right Bank


_	Stream			BKF	Max BKF					
Feature	Type	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool		11.2	11.26	0.99	2	11.34	1	5.9	1196.51	1196.51
1200					X7 Pool					
1199	Θ								***	
1198	- ***	**	****					***	***	
<u>i</u> 1197	-			***		XXXXX	*			
Elevation 196	-				*	*				
1195	-				***					
1194	-		16.11		¥"				4 5 11	,
1193	† L	••-Bar	nkfull•	- · Floodpro	ne -	— Year 2		Year 1	─ * —As Built]
1192								1		
'	95	105	115	125	135		145	155	165	175
					Statio	on				

Looking at the Left Bank

Looking at the Right Bank

Looking at the Left Bank

Looking at the Right Bank

Featu	ıro	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool		Турс	75.6	30.33	2.49	3.51	12.18	1	2.3	1200.37	1200.37
12	206 ₇					X9 Pool					
12	204 -	Θ-									
1	202 -										
Elevation	200 -	*	****	(**********	*				***	* * * * * *	
11	198 -				N. C.	*	***				
11	196 -				,	***	* * *				
			💠 - · Bank	full•-	Floodprone	e —	-Year 2	— × — Ye	ar 1 —	* As Built	
11	194		ı	ı	Т	ı		ı	1	T	
	9	5	105	115	125	138	5	145	155	165	175
						Stati	on				

Looking at the Left Bank

Looking at the Right Bank

		Stream			BKF	Max BKF					
	ature		BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Rif	ffle	С	26.3	18.01	1.46	2.57	12.34	1	3.9	1203.37	1203.37
	1207 -					X10 Riffle	e				
	1206 -	Θ								⊙	
	1205										
ion	1204 -	* ∽	****	***	** **********************************			· X	and the second second	****	
Elevation	1203 -			X X		\	· ·	* **	****	***	
	1202 -					X					
	1201 -					***					
	1200 -		•Ban	kfull • -	Floodpron	e —	-Year 2	-× Yea	ar1 →	K— As Built	
'	1199 -		1	ı	Ţ	Ţ		Ţ	T	ı	
	9	5	105	115	125	135	5	145	155	165	175
						Statio	on				

Looking at the Left Bank

Looking at the Right Bank

Featur Pool		Туре	BKF Area 35.4	BKF Width 29.89	Depth	Depth	W/D				
				23.03	1.18	2.74	25.24	BH Ratio 1	ER 2.3	1214.31	TOB Elev 1214.31
12	18 —					X11 Pool	l				
12 ⁻	17 -	Θ								••••••	
12	16 -										
12	15 -				***				W_		
Elevation 12:	14 -	***	***	***	1		A-121	***************************************	*		
6 12	13 -				*	NA NASA	***				
12)						
12					XXXXX	***					
12			•Ban	kfull◆-	- Floodpror	ne -	— Year 2		'ear 1 -	─ * As Built	
120	09 + 95		105	115	125	135	;	145	155	165	175
						Statio	on				

Looking at the Left Bank

Looking at the Right Bank

	Stream			BKF	Max BKF					
Feature	Type	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	С	21.7	18.15	1.2	1.89	15.14	1	3.9	1214.65	1214.65
1217	Θ-				X12 Riffle)				
1216	***	X V								
1215		**	***************************************	***			**************************************	**	_ * ♦ ***	
Elevation 1214	-									
1213	-				N. A.	***				
1212		• Ban	kfull •	Floodpron	e —	-Year 2	— × —Ye	ar 1 —	≭ —As Built	
1211		-	ı	-	-		ı	1	1	
	95	105	115	125	135	;	145	155	165	175
					Statio	on				
L										

Looking at the Left Bank

Looking at the Right Bank

		Stream			BKF	Max BKF					
	ature	Type	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
P	ool		31.6	22.93	1.38	2.87	16.67	1	3.1	1217.36	1217.36
	1221					X13 Poo	I				
	1220	Θ-									
	1219	-	K.		Ψ						
_	1218	-	***	*	***			_	*	* ***	
Elevation	1217	-			'	*	A	****			
Elev	1216	-					***				
	1215	-				WHAT THE PARTY OF					
	1214	-				***	K				
	1213	[• Banl	kfull ↔ -	-Floodpron	ne -	-Year 2	—×— Y	ear 1 -	— ≭ — As Built	
	1212	-	T	1	1	T		1	1	1	
	Ş	95	105	115	125	135	5	145	155	165	175
						Stati	on				

Looking at the Left Bank

Looking at the Right Bank

		Stream			BKF	Max BKF					
	ature		BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
R	iffle	С	18.9	16.71	1.13	1.93	14.77	1	4.2	1218	1218
	1221					X14 Riffle	e				
	1220	Θ								······•	
ion	1219	_ 	 	-*	*					****	
Elevation	1218				dr-		1	***	X	*	
	1217	_				A A A A A A A A A A A A A A A A A A A					
	1216		• • Bank	full •	Floodprone	-	Year 2	~~ Yea	ar 1 —	≭ —As Built	
	1215		-	ı	T	ı		1		ı	
	(95	105	115	125	135	5	145	155	165	175
						Statio	on				

Looking at the Left Bank

Looking at the Right Bank

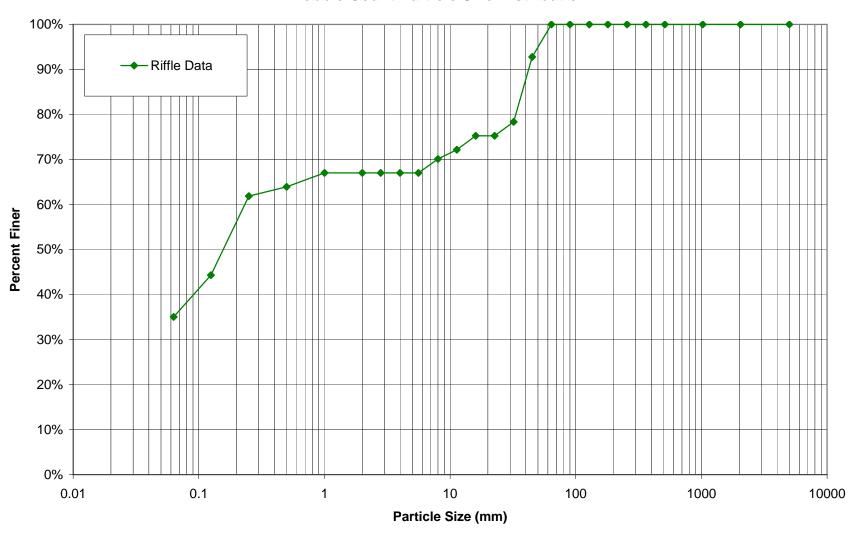
Fo	ature	Stream	DICE Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
	Riffle	Type C	BKF Area 17.1	16.29	1.05	1.82	15.49	1 1	4.3	1222.51	1222.52
	1225				•	X15 Riffle					
	1224	⊚ - - *	*	*						••••••	
 	1223			***	***		<i>§</i>	***	**	***	
Elevation	1222				X.						
_	1221					XXXXXX	**				
	1220	<u> </u>	•-Ban	kfull ↔ -	-Floodpron	ne -	Year 2	— × —Y	ear1 -	* As Built	
	1219		Т	ļ	Т	Т		T	Т	Т	
	(95	105	115	125	135 Statio		145	155	165	175

Looking at the Left Bank

Looking at the Right Bank

		Stream			BKF	Max BKF					
	ature	Type	BKF Area	BKF Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
P	Pool		11.3	14.01	0.81	1.8	17.29	1	5	1223.5	1223.5
	1226					X16 Pool					
	1225	Θ-··	**-							•	
	1224			***	(· ·			<u>**</u>	***	- M	
Elevation	1223			7		****	K***				
Ele	1222				Will Company						
	1221	_			***	**					
	1220	-	- • - Bankfı	۱۰۰۰۰-۱۱	Floodprone	-	Year 2	-× Yea	ar 1 —	∗—As Built	
	1219	-	1	T	ı	1		1	1	T	
	ç	95	105	115	125	135	;	145	155	165	175
						Statio					

PEBBLE COUNT DATA SHEET: RIFFLE 100-COUNT


	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X1-Riffle
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

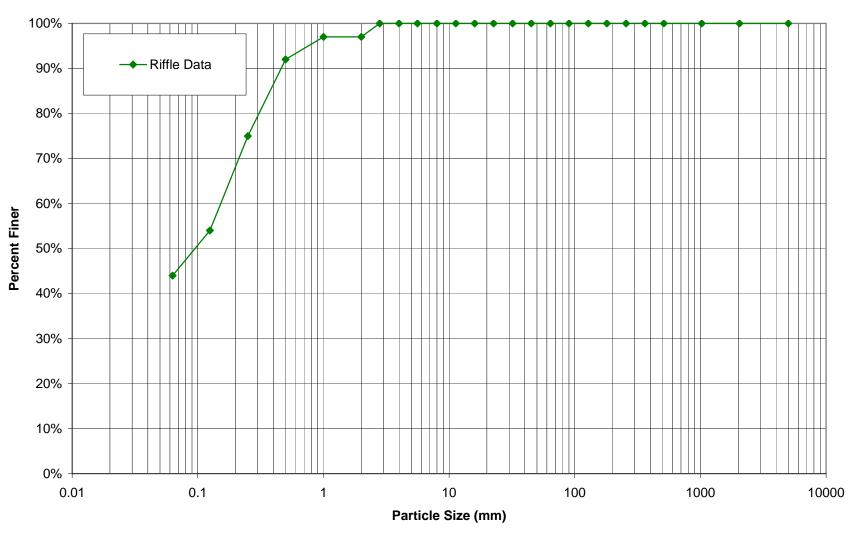
			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	34	35%	35%
	Very Fine	.063125	9	9%	44%
	Fine	.12525	17	18%	62%
S	Medium	.2550	2	2%	64%
N	Coarse	.50 - 1.0	3	3%	67%
D	Very Coarse	1.0 - 2.0			67%
	Very Fine	2.0 - 2.8			67%
	Very Fine	2.8 - 4.0			67%
	Fine	4.0 - 5.6			67%
G	Fine	5.6 - 8.0	3	3%	70%
POR	Medium	8.0 - 11.0	2	2%	72%
12012K-23	Medium	11.0 - 16.0	3	3%	75%
	Coarse	16.0 - 22.6			75%
100 L [20]	Coarse	22.6 - 32	3	3%	78%
	Very Coarse	32 - 45	14	14%	93%
20000	Very Coarse	45 - 64	7	7%	100%
	Small	64 - 90			100%
73 BACOLD	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$O() \times$	Large	180 - 256			100%
001	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	97	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: _____(riffle)

South Fork Hoppers Creek X1-Riffle Pebble Count Particle Size Distribution

PEBBLE COUNT DATA SHEET: POOL 100-COUNT


	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X2-Pool
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

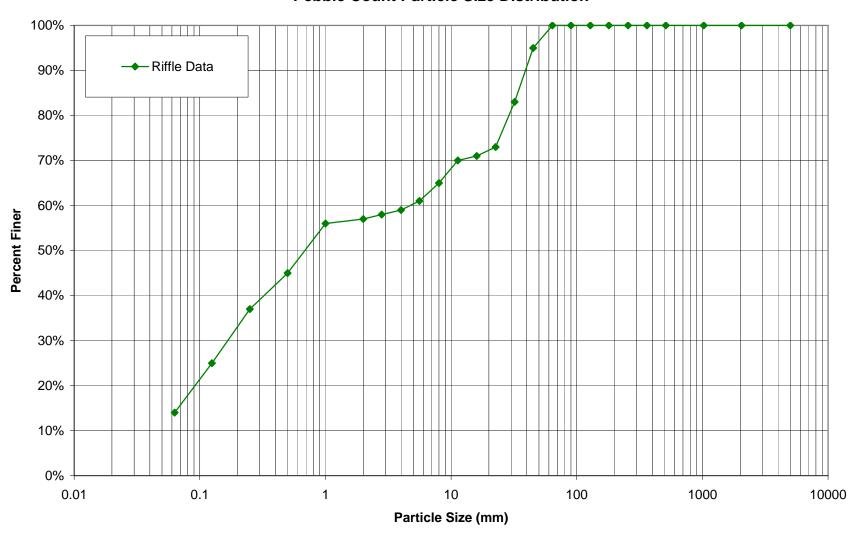
			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	44	44%	44%
	Very Fine	.063125	10	10%	54%
S	Fine	.12525	21	21%	75%
A N	Medium	.2550	17	17%	92%
D	Coarse	.50 - 1.0	5	5%	97%
	Very Coarse	1.0 - 2.0			97%
Ī	Very Fine	2.0 - 2.8	3	3%	100%
U Uŏ	Very Fine	2.8 - 4.0			100%
	Fine	4.0 - 5.6			100%
G	Fine	5.6 - 8.0			100%
PSR	Medium	8.0 - 11.0			100%
1000 KZ	Medium	11.0 - 16.0			100%
	Coarse	16.0 - 22.6			100%
W [20]	Coarse	22.6 - 32			100%
	Very Coarse	32 - 45			100%
2000	Very Coarse	45 - 64			100%
2000	Small	64 - 90			100%
7000	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$\mathcal{O}(\mathcal{I})$	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:	
-	(nool)

South Fork Hoppers Creek X2-Pool Pebble Count Particle Size Distribution

PEBBLE COUNT DATA SHEET: RIFFLE 100-COUNT

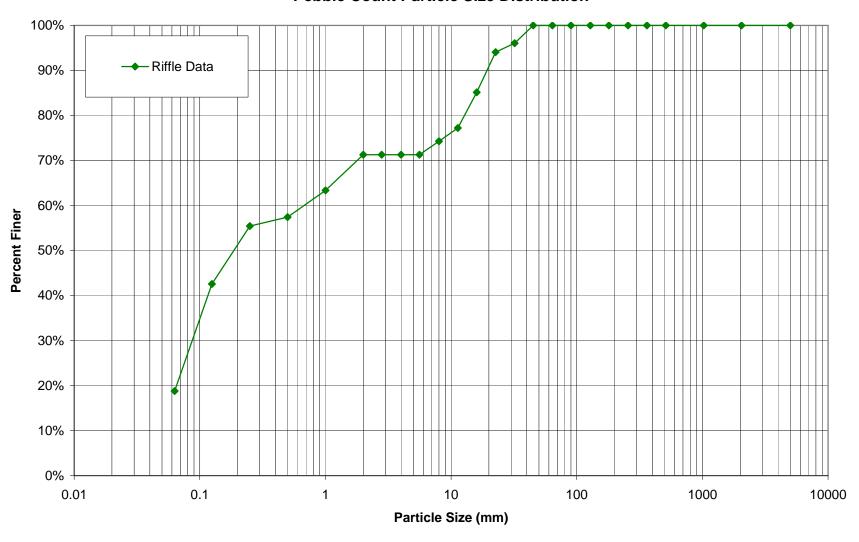

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X3-Riffle
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	14	14%	14%
	Very Fine	.063125	11	11%	25%
	Fine	.12525	12	12%	37%
S	Medium	.2550	8	8%	45%
N	Coarse	.50 - 1.0	11	11%	56%
D	Very Coarse	1.0 - 2.0	1	1%	57%
	Very Fine	2.0 - 2.8	1	1%	58%
~U_7X U7	Very Fine	2.8 - 4.0	1	1%	59%
	Fine	4.0 - 5.6	2	2%	61%
G	Fine	5.6 - 8.0	4	4%	65%
POR C	Medium	8.0 - 11.0	5	5%	70%
	Medium	11.0 - 16.0	1	1%	71%
	Coarse	16.0 - 22.6	2	2%	73%
100 L 100	Coarse	22.6 - 32	10	10%	83%
007	Very Coarse	32 - 45	12	12%	95%
2000	Very Coarse	45 - 64	5	5%	100%
20000	Small	64 - 90			100%
2000	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$O(2 \times 10^{-3})$	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

-
Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

_argest particles:	
	(riffle)

South Fork Hoppers Creek X3-Riffle Pebble Count Particle Size Distribution

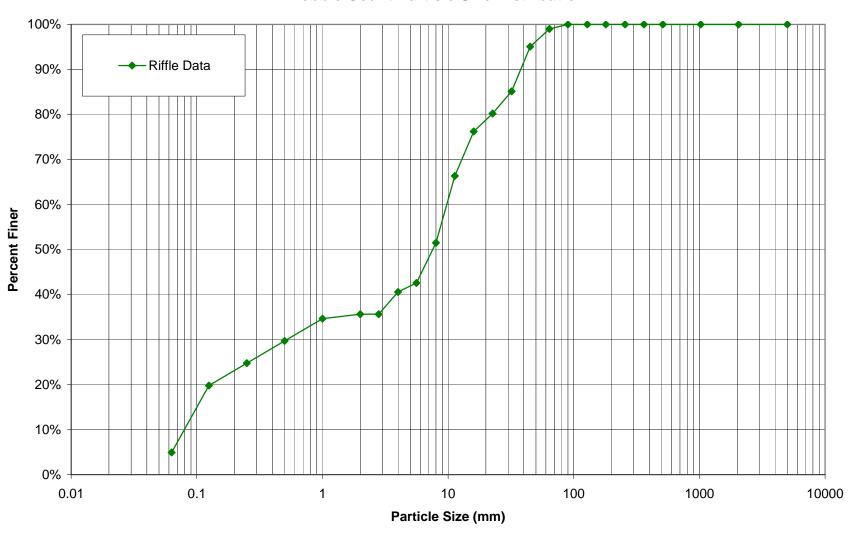

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X4-Pool
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	19	19%	19%
	Very Fine	.063125	24	24%	43%
	Fine	.12525	13	13%	55%
S	Medium	.2550	2	2%	57%
N	Coarse	.50 - 1.0	6	6%	63%
D	Very Coarse	1.0 - 2.0	8	8%	71%
	Very Fine	2.0 - 2.8			71%
~U_7X U7	Very Fine	2.8 - 4.0			71%
	Fine	4.0 - 5.6			71%
G	Fine	5.6 - 8.0	3	3%	74%
R	Medium	8.0 - 11.0	3	3%	77%
12012 KZ	Medium	11.0 - 16.0	8	8%	85%
	Coarse	16.0 - 22.6	9	9%	94%
100 L [20]	Coarse	22.6 - 32	2	2%	96%
	Very Coarse	32 - 45	4	4%	100%
2000	Very Coarse	45 - 64			100%
20000	Small	64 - 90			100%
2000	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
O/X	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	101	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:	
	(nool)

South Fork Hoppers Creek X4-Pool Pebble Count Particle Size Distribution

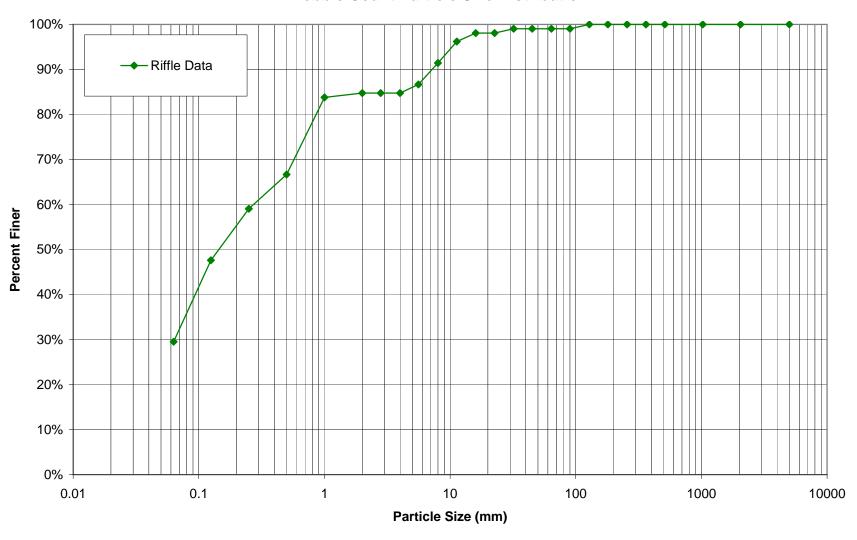

	BUCK PROJECT NO. 108410
-	DOCK FROJECT NO. 100410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X5-Riffle
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	5	5%	5%
	Very Fine	.063125	15	15%	20%
	Fine	.12525	5	5%	25%
S	Medium	.2550	5	5%	30%
N	Coarse	.50 - 1.0	5	5%	35%
D	Very Coarse	1.0 - 2.0	1	1%	36%
Ш	Very Fine	2.0 - 2.8			36%
	Very Fine	2.8 - 4.0	5	5%	41%
	Fine	4.0 - 5.6	2	2%	43%
G	Fine	5.6 - 8.0	9	9%	51%
O R	Medium	8.0 - 11.0	15	15%	66%
	Medium	11.0 - 16.0	10	10%	76%
VA) ED A	Coarse	16.0 - 22.6	4	4%	80%
100 LE 201	Coarse	22.6 - 32	5	5%	85%
001, 100	Very Coarse	32 - 45	10	10%	95%
20000	Very Coarse	45 - 64	4	4%	99%
2000	Small	64 - 90	1	1%	100%
7 9 4 6 V	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
	Large	180 - 256			100%
	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	101	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: _____ (riffle)

South Fork Hoppers Creek X5-Riffle Pebble Count Particle Size Distribution

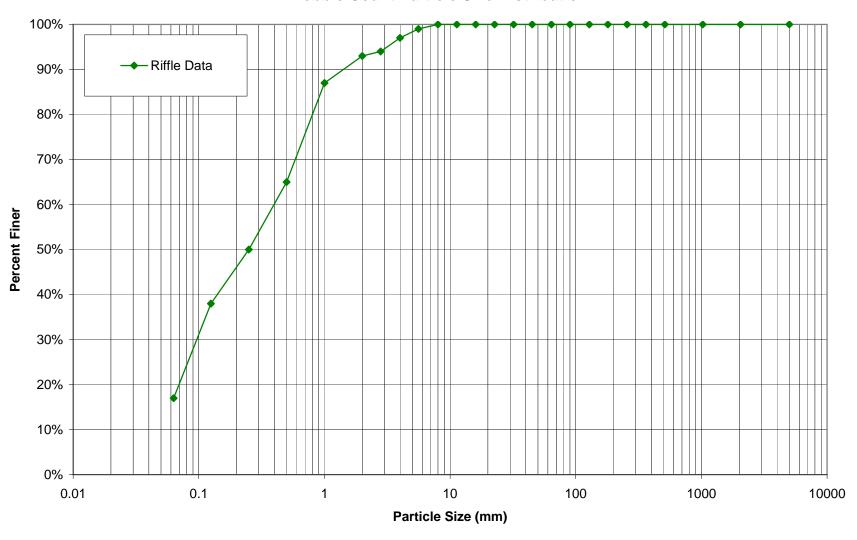

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X6-Pool
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	31	30%	30%
	Very Fine	.063125	19	18%	48%
	Fine	.12525	12	11%	59%
S	Medium	.2550	8	8%	67%
N	Coarse	.50 - 1.0	18	17%	84%
D	Very Coarse	1.0 - 2.0	1	1%	85%
	Very Fine	2.0 - 2.8			85%
	Very Fine	2.8 - 4.0			85%
	Fine	4.0 - 5.6	2	2%	87%
G	Fine	5.6 - 8.0	5	5%	91%
POR RIVE	Medium	8.0 - 11.0	5	5%	96%
	Medium	11.0 - 16.0	2	2%	98%
USA EDOS	Coarse	16.0 - 22.6			98%
100 LE 20	Coarse	22.6 - 32	1	1%	99%
	Very Coarse	32 - 45			99%
2000	Very Coarse	45 - 64			99%
200000	Small	64 - 90			99%
2000 B	Small	90 - 128	1	1%	100%
COBBLE	Large	128 - 180			100%
$\mathcal{O}(\mathcal{I})$	Large	180 - 256			100%
	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	105	100%	

_
Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:	
	(lood)

South Fork Hoppers Creek X6-Pool Pebble Count Particle Size Distribution

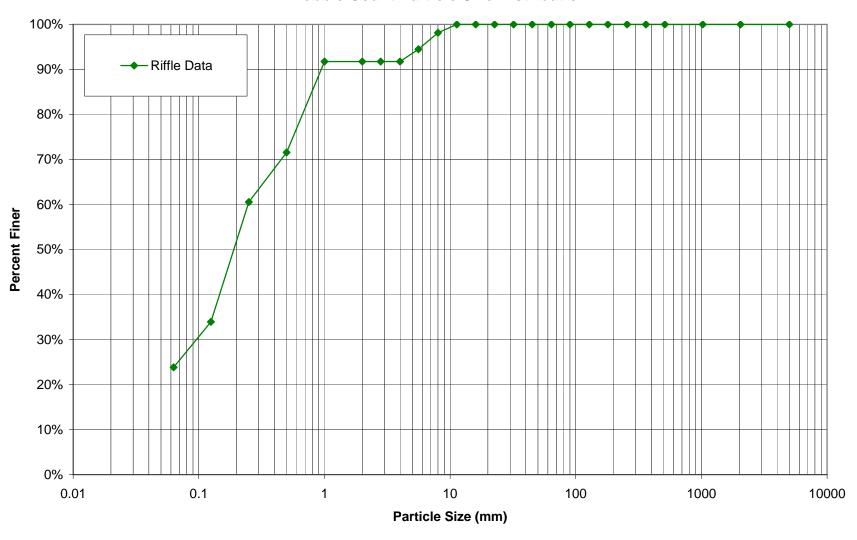

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X7-Pool
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	17	17%	17%
	Very Fine	.063125	21	21%	38%
	Fine	.12525	12	12%	50%
S	Medium	.2550	15	15%	65%
N	Coarse	.50 - 1.0	22	22%	87%
D	Very Coarse	1.0 - 2.0	6	6%	93%
	Very Fine	2.0 - 2.8	1	1%	94%
	Very Fine	2.8 - 4.0	3	3%	97%
	Fine	4.0 - 5.6	2	2%	99%
G	Fine	5.6 - 8.0	1	1%	100%
POR C	Medium	8.0 - 11.0			100%
12012 KZC	Medium	11.0 - 16.0			100%
	Coarse	16.0 - 22.6			100%
75 L [20]	Coarse	22.6 - 32			100%
001100	Very Coarse	32 - 45			100%
2000	Very Coarse	45 - 64			100%
2000	Small	64 - 90			100%
7 940CM	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$\mathcal{O}(\mathcal{I})$	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

Distribution Plot Size (mm)
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:	
	(pool)

South Fork Hoppers Creek X7-Pool Pebble Count Particle Size Distribution

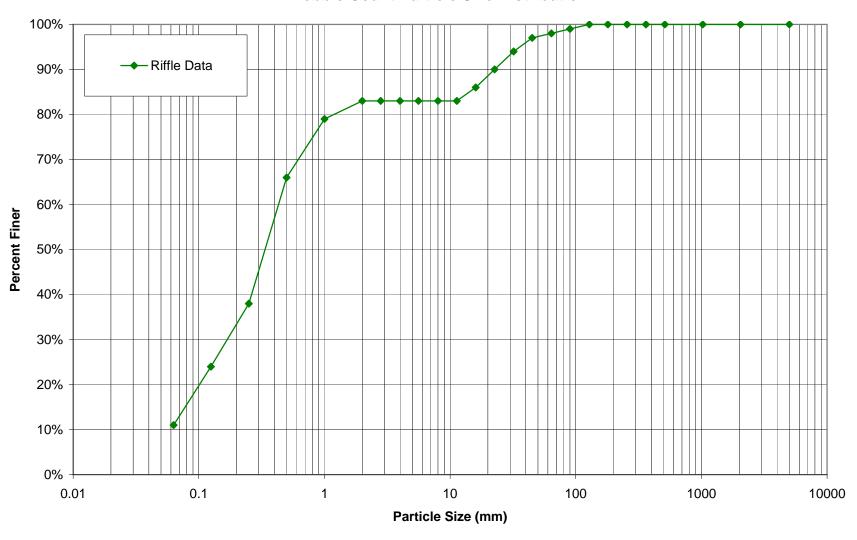

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X8-Riffle
DATE COLLECTED:	11/6/2007
FIELD COLLECTION BY:	RR/SU
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Summary	
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	26	24%	24%
	Very Fine	.063125	11	10%	34%
	Fine	.12525	29	27%	61%
S	Medium	.2550	12	11%	72%
N	Coarse	.50 - 1.0	22	20%	92%
D	Very Coarse	1.0 - 2.0			92%
	Very Fine	2.0 - 2.8			92%
	Very Fine	2.8 - 4.0			92%
	Fine	4.0 - 5.6	3	3%	94%
	Fine	5.6 - 8.0	4	4%	98%
PSR S	Medium	8.0 - 11.0	2	2%	100%
	Medium	11.0 - 16.0			100%
129 E 5.08	Coarse	16.0 - 22.6			100%
201 P201	Coarse	22.6 - 32			100%
	Very Coarse	32 - 45			100%
20000	Very Coarse	45 - 64			100%
2000	Small	64 - 90			100%
77 Q400 B	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$O() \times ($	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
7	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
, ,		Total	109	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: _____ (riffle)

South Fork Hoppers Creek X8-Riffle Pebble Count Particle Size Distribution

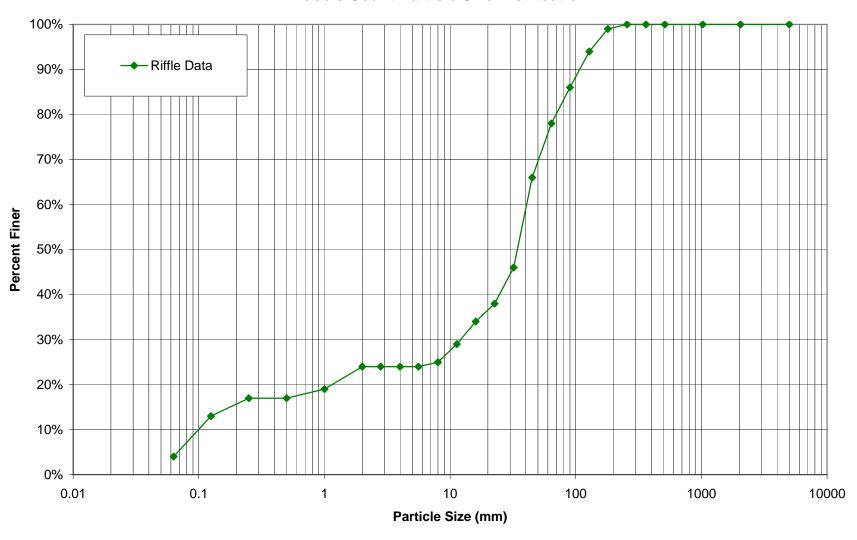

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X9-Pool
DATE COLLECTED:	11/5/2007
FIELD COLLECTION BY:	RR/IE
DATA ENTRY BY:	IE

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	11	11%	11%
	Very Fine	.063125	13	13%	24%
	Fine	.12525	14	14%	38%
S	Medium	.2550	28	28%	66%
N	Coarse	.50 - 1.0	13	13%	79%
D	Very Coarse	1.0 - 2.0	4	4%	83%
	Very Fine	2.0 - 2.8			83%
~U_7X U7	Very Fine	2.8 - 4.0			83%
	Fine	4.0 - 5.6			83%
G	Fine	5.6 - 8.0			83%
POR C	Medium	8.0 - 11.0			83%
12012 KZ	Medium	11.0 - 16.0	3	3%	86%
199 E 5.08	Coarse	16.0 - 22.6	4	4%	90%
100 L [20]	Coarse	22.6 - 32	4	4%	94%
	Very Coarse	32 - 45	3	3%	97%
20000	Very Coarse	45 - 64	1	1%	98%
382000	Small	64 - 90	1	1%	99%
2000	Small	90 - 128	1	1%	100%
COBBLE	Large	128 - 180			100%
$O(2 \times 10^{-3})$	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: ____(pool)

South Fork Hoppers Creek X9-Pool Pebble Count Particle Size Distribution

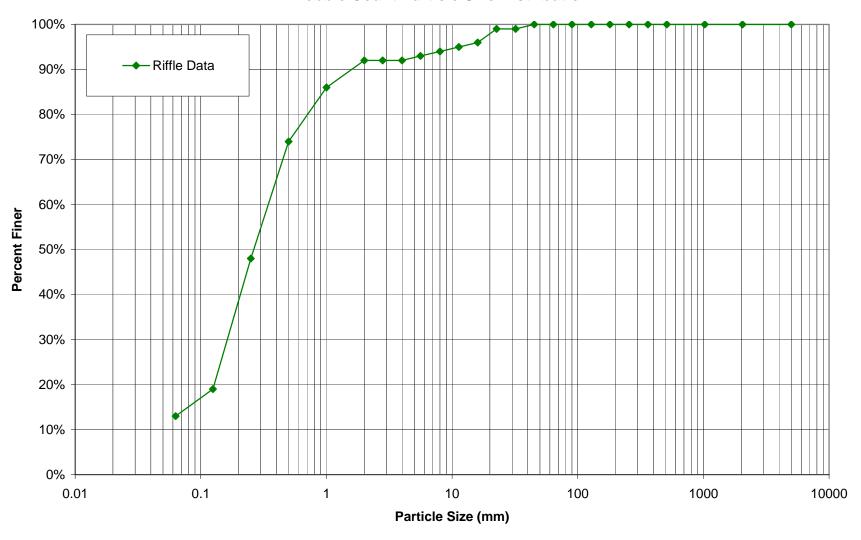

	BUC	K PROJECT NO.	108410
SITE OR PROJECT:	South Fork Hopp	ers Creek, Year 2 Mor	nitoring
REACH/LOCATION:	X10-Riffle		
DATE COLLECTED:	11/5/2007		
FIELD COLLECTION BY:	RR/IE		
DATA ENTRY BY:	IE		

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	4	4%	4%
	Very Fine	.063125	9	9%	13%
	Fine	.12525	4	4%	17%
S	Medium	.2550			17%
N	Coarse	.50 - 1.0	2	2%	19%
D	Very Coarse	1.0 - 2.0	5	5%	24%
	Very Fine	2.0 - 2.8			24%
	Very Fine	2.8 - 4.0			24%
	Fine	4.0 - 5.6			24%
G	Fine	5.6 - 8.0	1	1%	25%
POR N	Medium	8.0 - 11.0	4	4%	29%
	Medium	11.0 - 16.0	5	5%	34%
1297E 5.00	Coarse	16.0 - 22.6	4	4%	38%
PAO	Coarse	22.6 - 32	8	8%	46%
	Very Coarse	32 - 45	20	20%	66%
2000	Very Coarse	45 - 64	12	12%	78%
	Small	64 - 90	8	8%	86%
2000 B	Small	90 - 128	8	8%	94%
COBBLE	Large	128 - 180	5	5%	99%
OOX	Large	180 - 256	1	1%	100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

_
Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: 250.00 (riffle)

South Fork Hoppers Creek X10-Riffle Pebble Count Particle Size Distribution

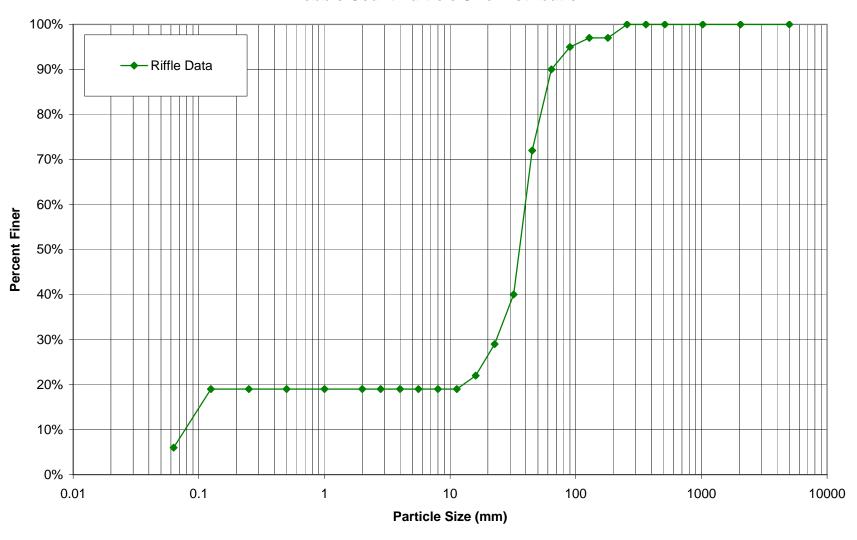

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X11-Pool
DATE COLLECTED:	11/5/2007
FIELD COLLECTION BY:	RR/IE
DATA ENTRY BY:	IE

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	13	13%	13%
	Very Fine	.063125	6	6%	19%
	Fine	.12525	29	29%	48%
S	Medium	.2550	26	26%	74%
N	Coarse	.50 - 1.0	12	12%	86%
D	Very Coarse	1.0 - 2.0	6	6%	92%
	Very Fine	2.0 - 2.8			92%
	Very Fine	2.8 - 4.0			92%
	Fine	4.0 - 5.6	1	1%	93%
	Fine	5.6 - 8.0	1	1%	94%
RIVE	Medium	8.0 - 11.0	1	1%	95%
	Medium	11.0 - 16.0	1	1%	96%
199 E 5.08	Coarse	16.0 - 22.6	3	3%	99%
100 L [20]	Coarse	22.6 - 32			99%
	Very Coarse	32 - 45	1	1%	100%
20000	Very Coarse	45 - 64			100%
200000	Small	64 - 90			100%
7 0 0 0 V	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
O/\mathcal{L}	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
, , , , , , , , , , , , , , , , , , , ,		Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:	
	(pool)

South Fork Hoppers Creek X11-Pool Pebble Count Particle Size Distribution

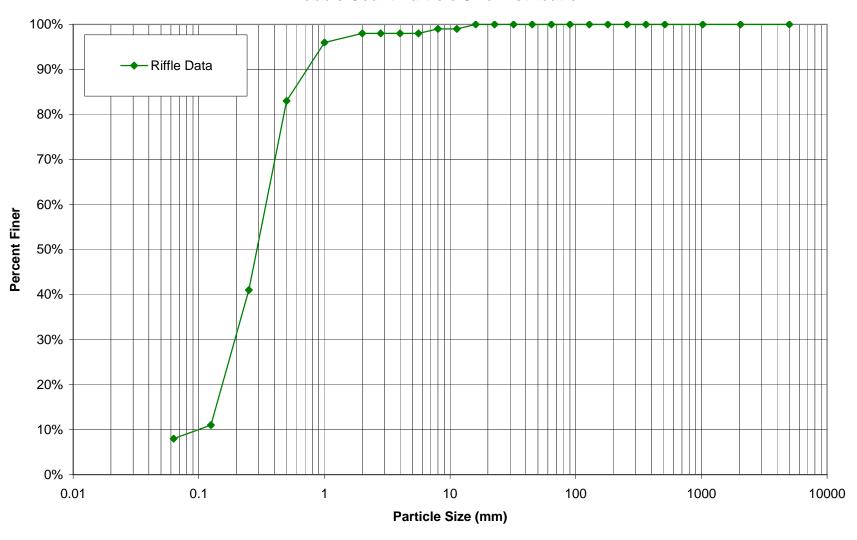

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X12-Riffle
DATE COLLECTED:	11/5/2007
FIELD COLLECTION BY:	RR/IE
DATA ENTRY BY:	IE

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	6	6%	6%
	Very Fine	.063125	13	13%	19%
	Fine	.12525			19%
S	Medium	.2550			19%
N	Coarse	.50 - 1.0			19%
D	Very Coarse	1.0 - 2.0			19%
	Very Fine	2.0 - 2.8			19%
	Very Fine	2.8 - 4.0			19%
	Fine	4.0 - 5.6			19%
G G	Fine	5.6 - 8.0			19%
PSR S	Medium	8.0 - 11.0			19%
	Medium	11.0 - 16.0	3	3%	22%
	Coarse	16.0 - 22.6	7	7%	29%
757L P20	Coarse	22.6 - 32	11	11%	40%
	Very Coarse	32 - 45	32	32%	72%
2000	Very Coarse	45 - 64	18	18%	90%
2000	Small	64 - 90	5	5%	95%
2000 B	Small	90 - 128	2	2%	97%
COBBLE	Large	128 - 180			97%
O(/X)	Large	180 - 256	3	3%	100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: 240.00 (riffle)

South Fork Hoppers Creek X12-Riffle Pebble Count Particle Size Distribution

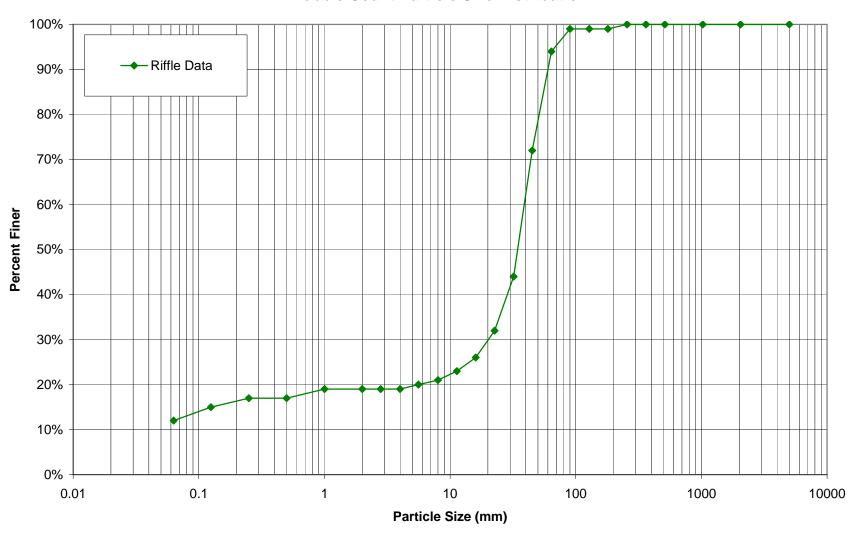

	BUCK PROJECT NO. 108410	
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring	
REACH/LOCATION:	X13-Pool	
DATE COLLECTED:	11/5/2007	
FIELD COLLECTION BY:	RR/IE	
DATA ENTRY BY:	IE	

			PARTICLE CLASS COUNT	Summary	
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	8	8%	8%
	Very Fine	.063125	3	3%	11%
	Fine	.12525	30	30%	41%
S	Medium	.2550	42	42%	83%
N	Coarse	.50 - 1.0	13	13%	96%
D	Very Coarse	1.0 - 2.0	2	2%	98%
	Very Fine	2.0 - 2.8			98%
	Very Fine	2.8 - 4.0			98%
	Fine	4.0 - 5.6			98%
G	Fine	5.6 - 8.0	1	1%	99%
POR R	Medium	8.0 - 11.0			99%
12012K23	Medium	11.0 - 16.0	1	1%	100%
	Coarse	16.0 - 22.6			100%
W [20]	Coarse	22.6 - 32			100%
	Very Coarse	32 - 45			100%
20000	Very Coarse	45 - 64			100%
AND 999	Small	64 - 90			100%
73 BACOLD	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$\mathcal{O}(\mathcal{I})$	Large	180 - 256			100%
	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: ____(pool)

South Fork Hoppers Creek X13-Pool Pebble Count Particle Size Distribution

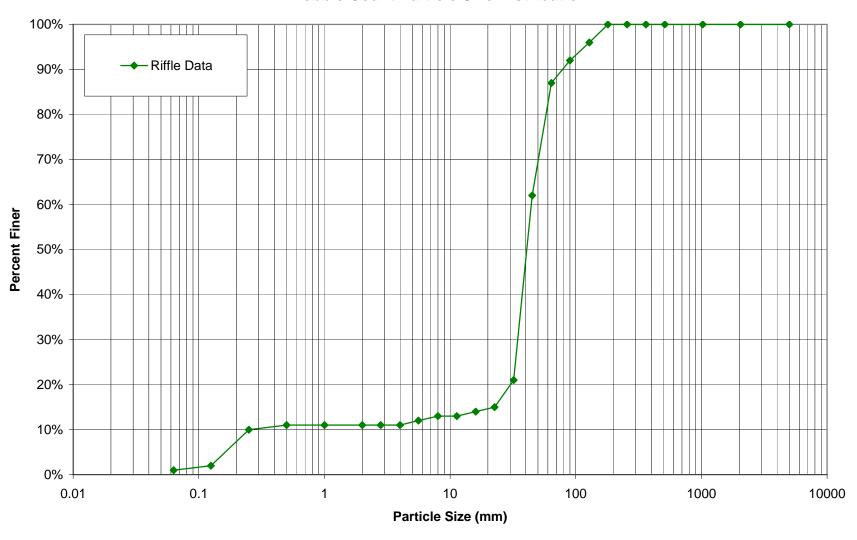

	BUCK PROJECT NO. 108410
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring
REACH/LOCATION:	X14-Riffle
DATE COLLECTED:	11/5/2007
FIELD COLLECTION BY:	RR/IE
DATA ENTRY BY:	IE

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	12	12%	12%
	Very Fine	.063125	3	3%	15%
	Fine	.12525	2	2%	17%
S	Medium	.2550			17%
N	Coarse	.50 - 1.0	2	2%	19%
D	Very Coarse	1.0 - 2.0			19%
	Very Fine	2.0 - 2.8			19%
	Very Fine	2.8 - 4.0			19%
	Fine	4.0 - 5.6	1	1%	20%
G	Fine	5.6 - 8.0	1	1%	21%
POR OF	Medium	8.0 - 11.0	2	2%	23%
1000 KYC	Medium	11.0 - 16.0	3	3%	26%
	Coarse	16.0 - 22.6	6	6%	32%
100 L [20]	Coarse	22.6 - 32	12	12%	44%
00000	Very Coarse	32 - 45	28	28%	72%
2000	Very Coarse	45 - 64	22	22%	94%
2000	Small	64 - 90	5	5%	99%
7 9 4 6 C S	Small	90 - 128			99%
COBBLE	Large	128 - 180			99%
$O(\sqrt{2})$	Large	180 - 256	1	1%	100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: 200.00 (riffle)

South Fork Hoppers Creek X14-Riffle Pebble Count Particle Size Distribution

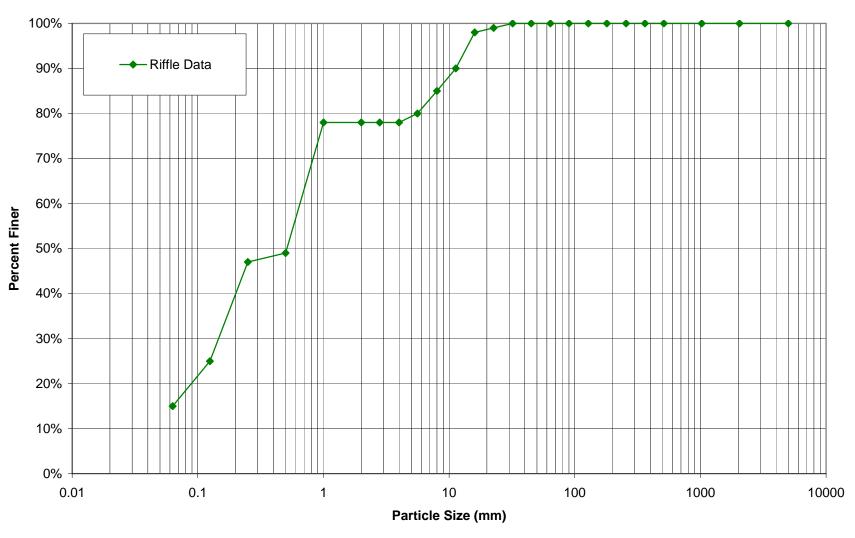

	BUCK PROJECT NO. 108410	
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring	
REACH/LOCATION:	X15-Riffle	
DATE COLLECTED:	11/5/2007	
FIELD COLLECTION BY:	RR/IE	
DATA ENTRY BY:	IE	

			PARTICLE CLASS COUNT	Summary	
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	1	1%	1%
	Very Fine	.063125	1	1%	2%
	Fine	.12525	8	8%	10%
S	Medium	.2550	1	1%	11%
N	Coarse	.50 - 1.0			11%
D	Very Coarse	1.0 - 2.0			11%
	Very Fine	2.0 - 2.8			11%
70 77 Um	Very Fine	2.8 - 4.0			11%
	Fine	4.0 - 5.6	1	1%	12%
G	Fine	5.6 - 8.0	1	1%	13%
PSR S	Medium	8.0 - 11.0			13%
	Medium	11.0 - 16.0	1	1%	14%
	Coarse	16.0 - 22.6	1	1%	15%
77 F F 20	Coarse	22.6 - 32	6	6%	21%
	Very Coarse	32 - 45	41	41%	62%
20000	Very Coarse	45 - 64	25	25%	87%
2000	Small	64 - 90	5	5%	92%
2000 B	Small	90 - 128	4	4%	96%
COBBLE	Large	128 - 180	4	4%	100%
O(/X)	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

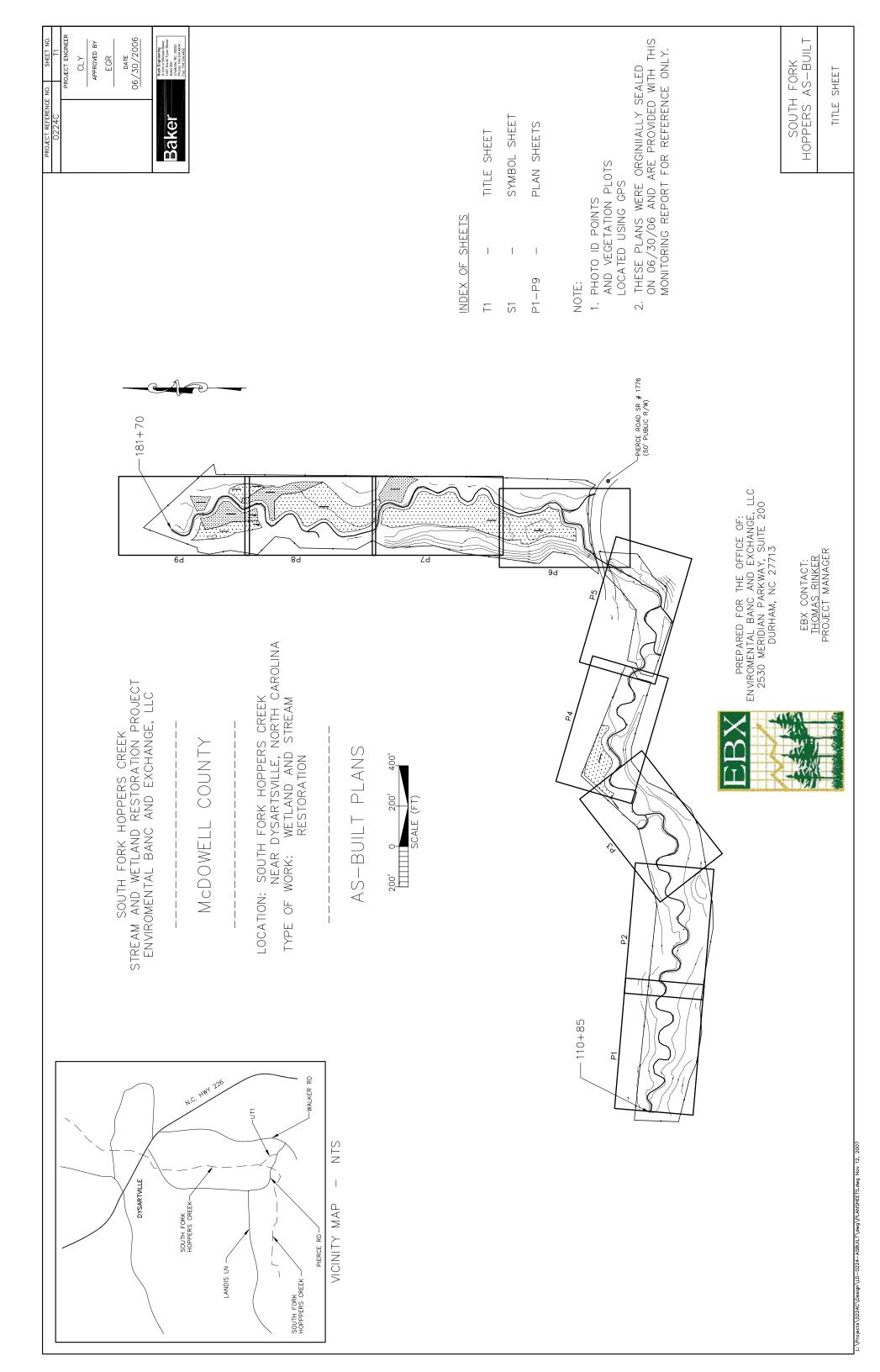
Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles: _____(riffle)

South Fork Hoppers Creek X15-Riffle Pebble Count Particle Size Distribution

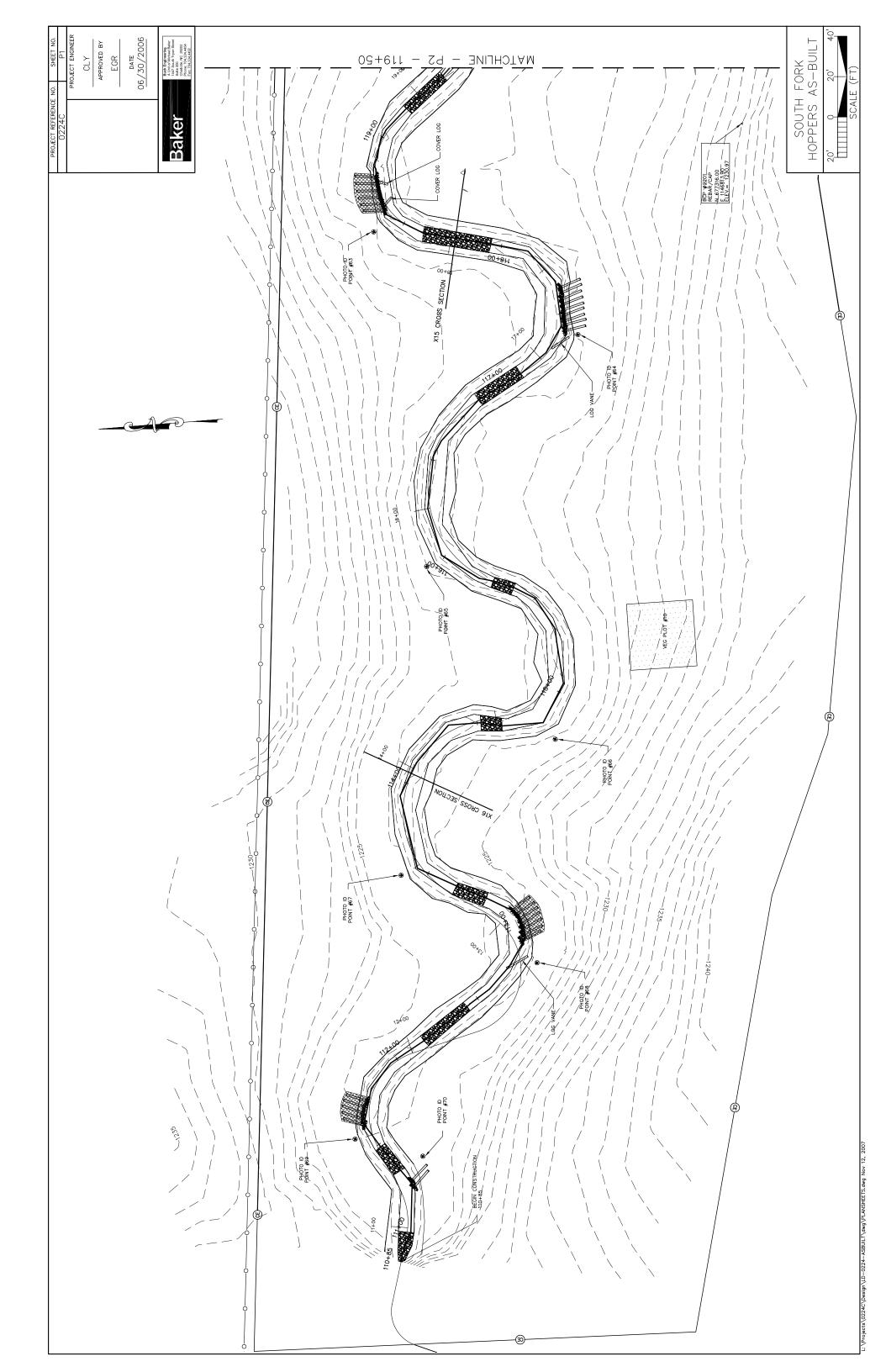

	BUCK PROJECT NO. 108410				
SITE OR PROJECT:	South Fork Hoppers Creek, Year 2 Monitoring				
REACH/LOCATION:	X16-Pool				
DATE COLLECTED:	11/5/2007				
FIELD COLLECTION BY:	RR/IE				
DATA ENTRY BY:	IE				

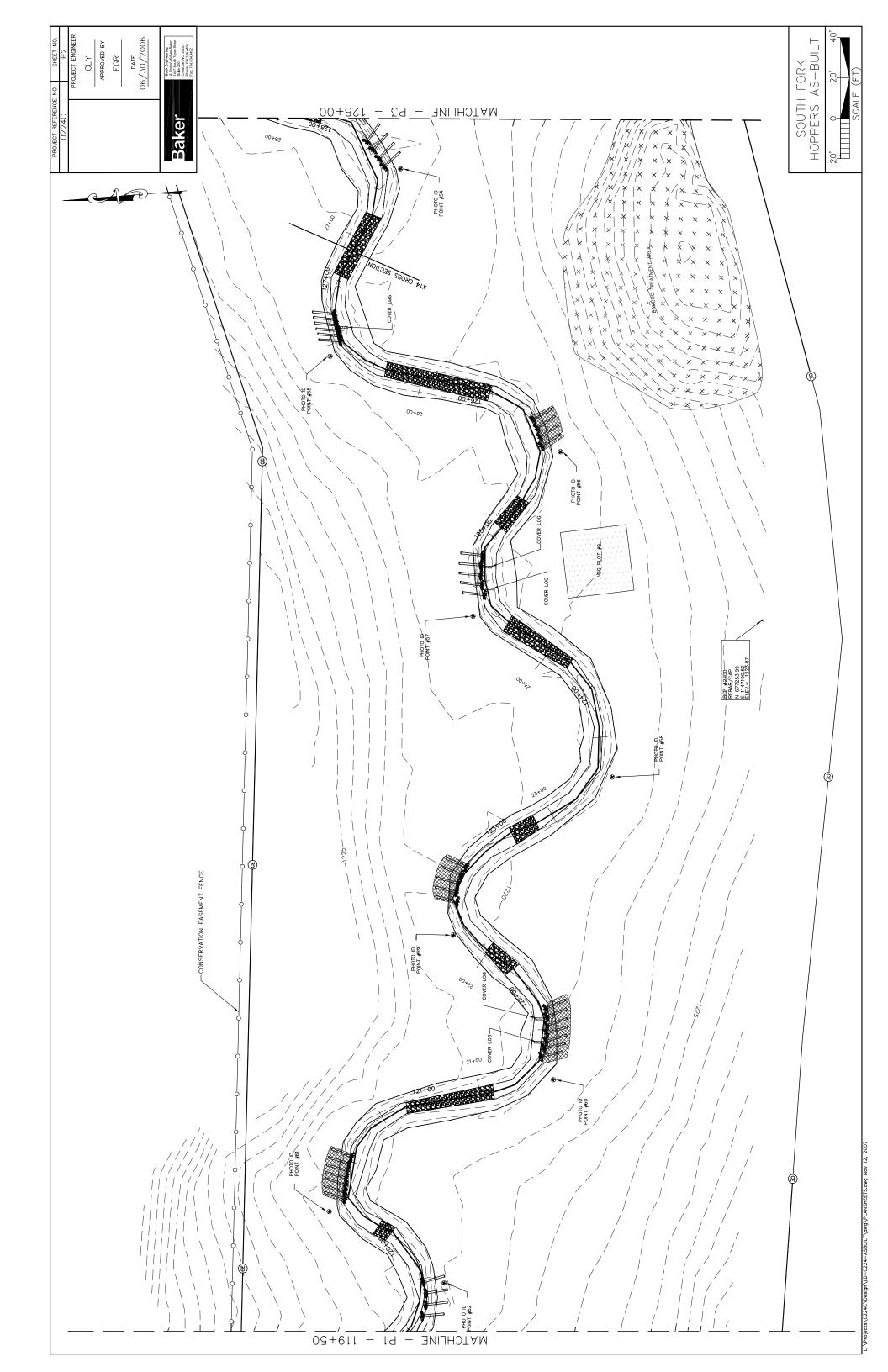
			PARTICLE CLASS COUNT	Summary	
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	15	15%	15%
	Very Fine	.063125	10	10%	25%
	Fine	.12525	22	22%	47%
S	Medium	.2550	2	2%	49%
N	Coarse	.50 - 1.0	29	29%	78%
D	Very Coarse	1.0 - 2.0			78%
	Very Fine	2.0 - 2.8			78%
~U~~~ O~	Very Fine	2.8 - 4.0			78%
	Fine	4.0 - 5.6	2	2%	80%
G	Fine	5.6 - 8.0	5	5%	85%
POR O	Medium	8.0 - 11.0	5	5%	90%
12012 KYC	Medium	11.0 - 16.0	8	8%	98%
	Coarse	16.0 - 22.6	1	1%	99%
75 L 1200	Coarse	22.6 - 32	1	1%	100%
00/200	Very Coarse	32 - 45			100%
2000	Very Coarse	45 - 64			100%
2000	Small	64 - 90			100%
7 940CM	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$O() \times O() \times O()$	Large	180 - 256			100%
007	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
	Large-Very Large	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

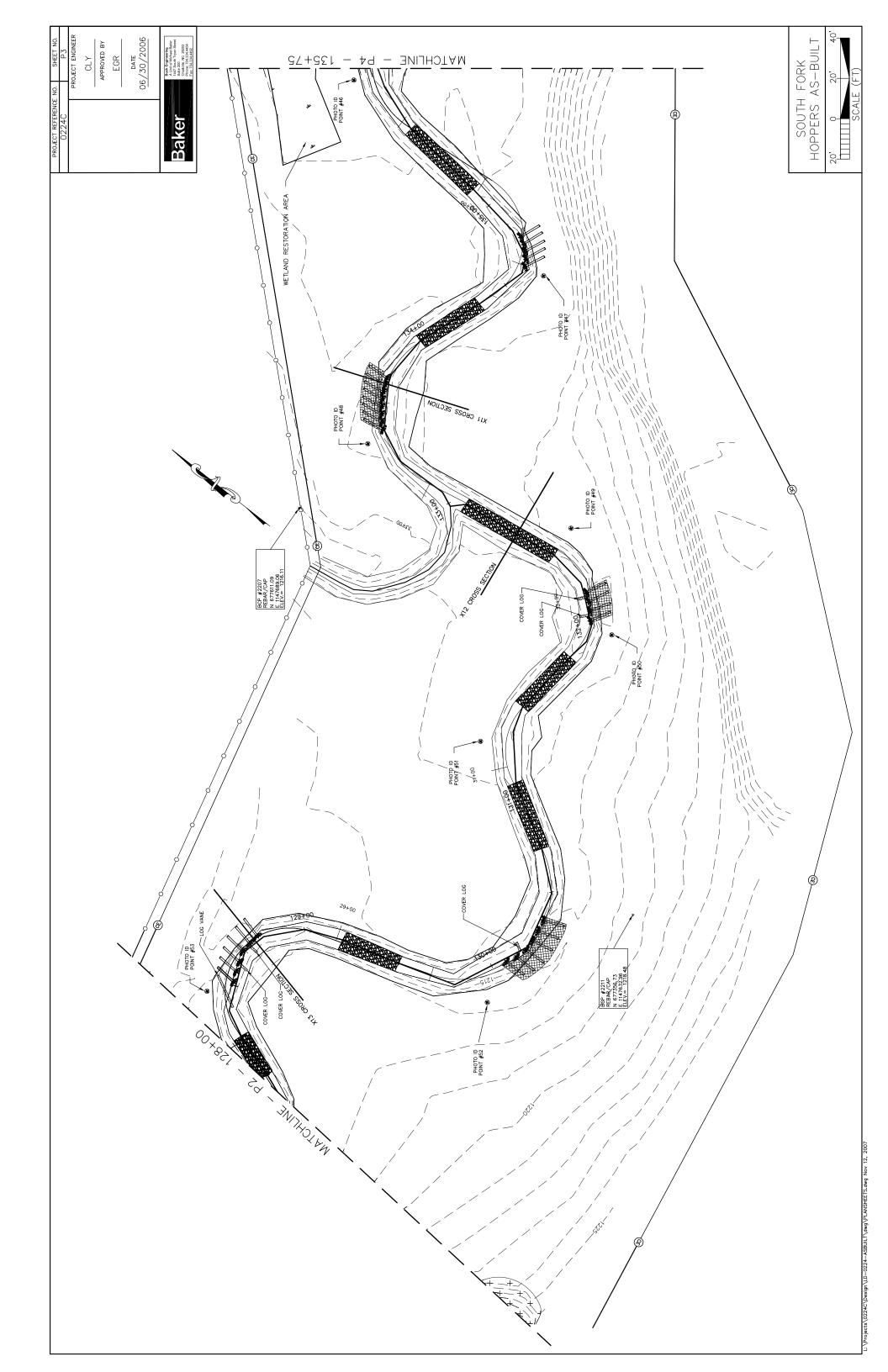

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

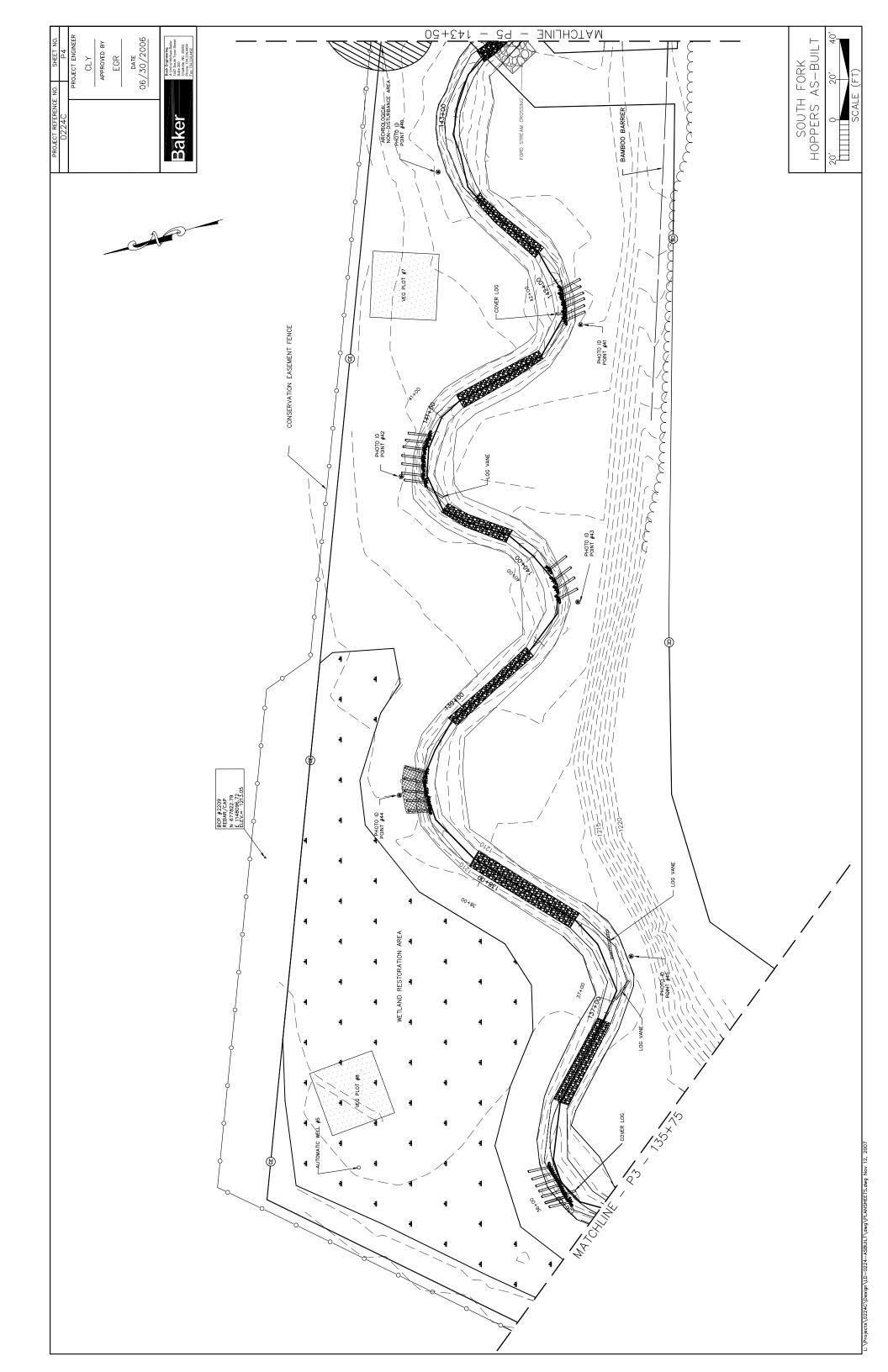
Largest particles: ____(pool)

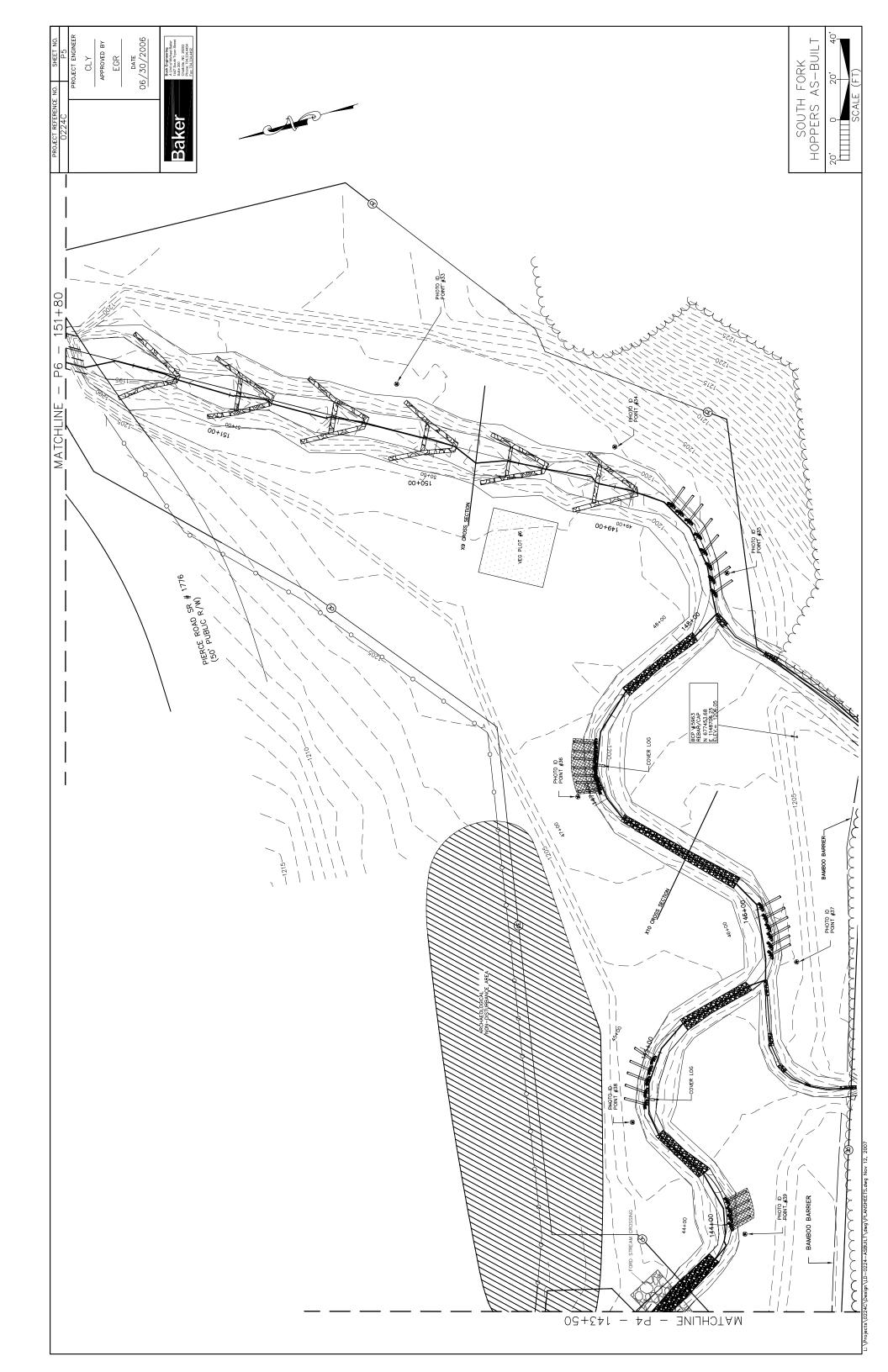
South Fork Hoppers Creek X16-Pool Pebble Count Particle Size Distribution

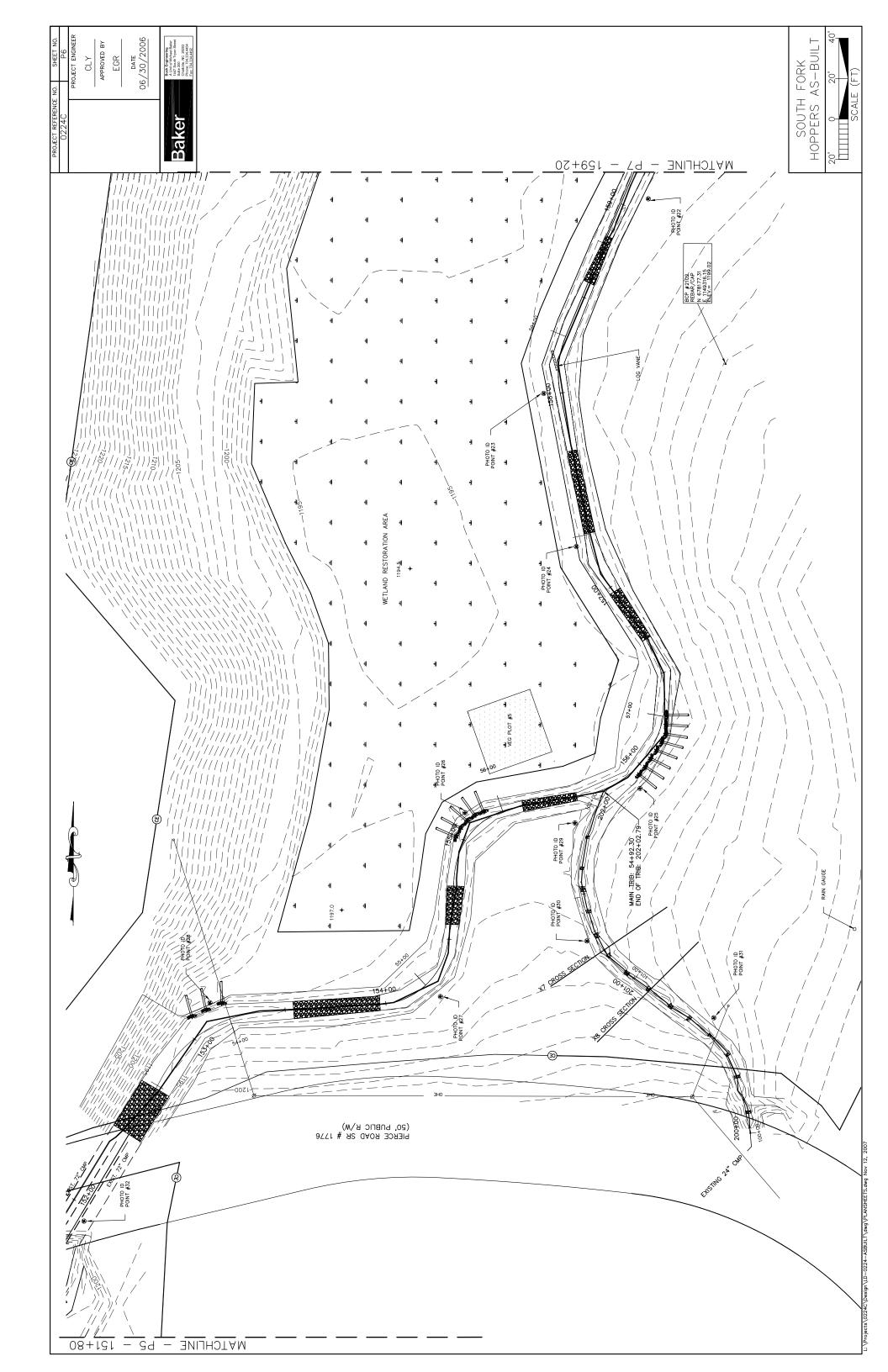

APPENDIX C AS-BUILT PLAN SHEETS

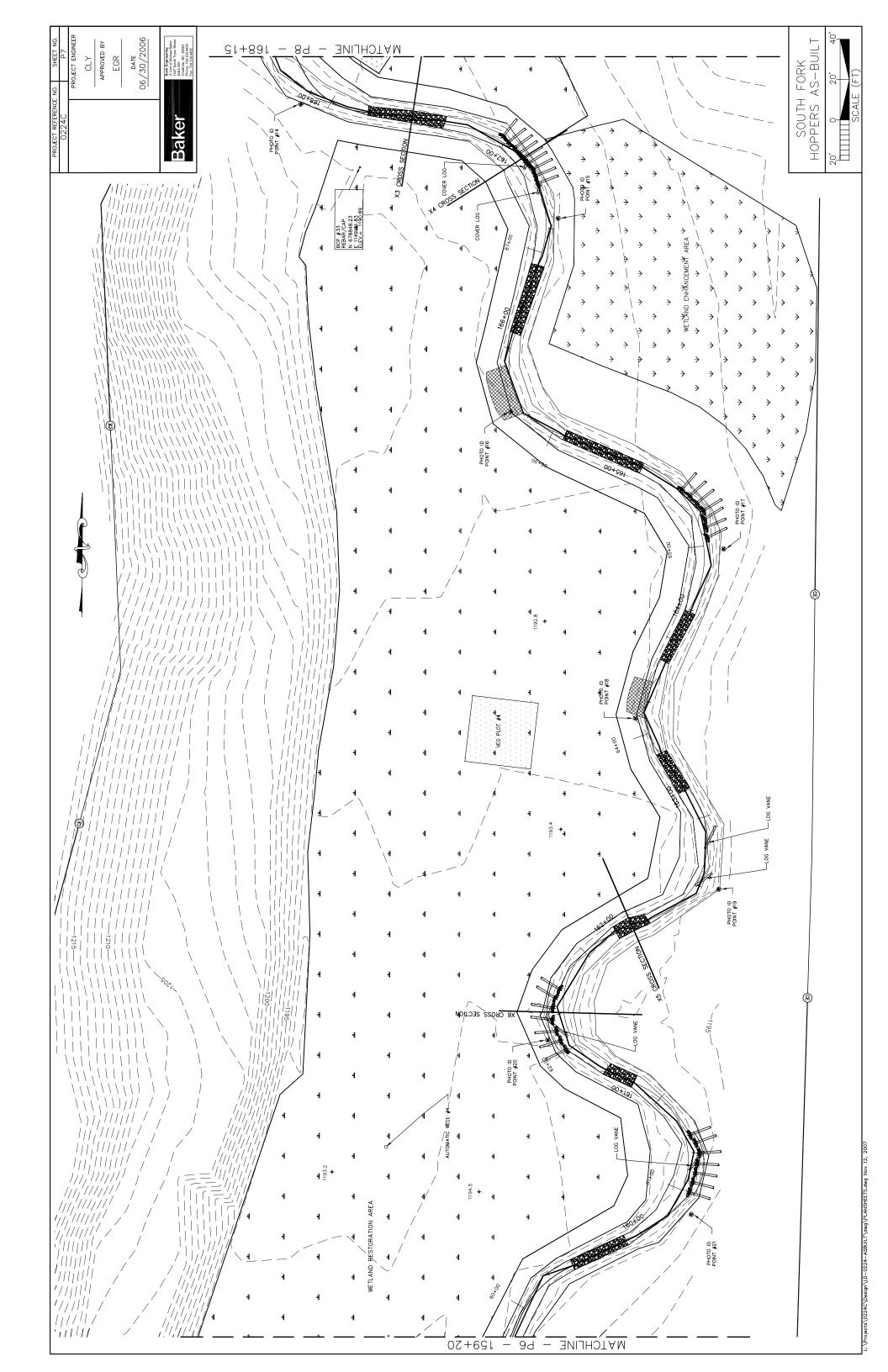


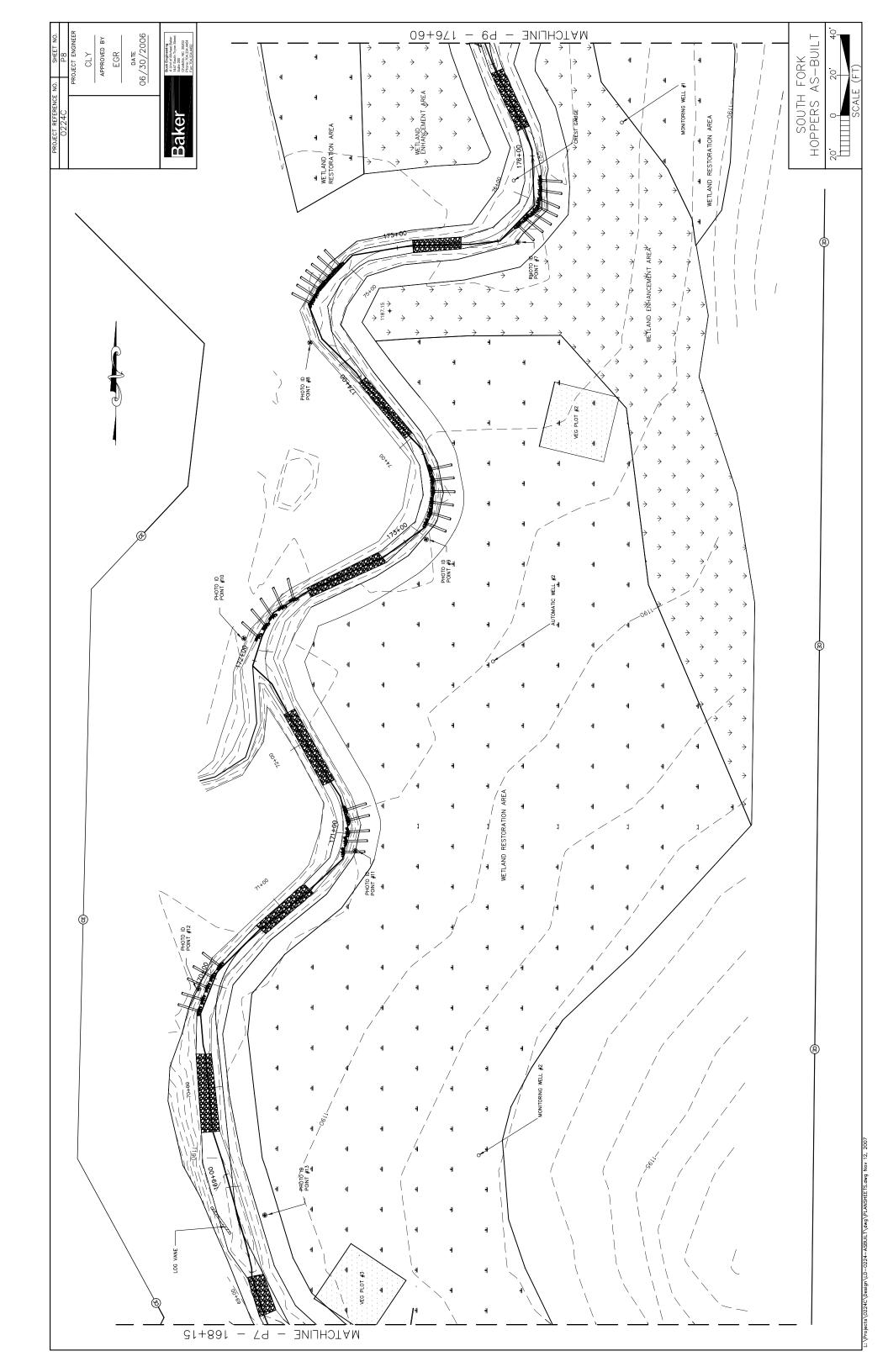

J. J							
D224C S1 PROJECT ENGINEER CLY APPROVED BY EGR DATE 06/30/2006 06/30/2006 D18/2001 Promote Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge Base A Long Challenge							SOUTH FORK HOPPERS AS-BUILT
				T EA			
	ROOTWAD	CONSTRUCTED RIFFLE PHOTO ID POINT SURVEY CONTROL POINT	CROSS VANE LOG VANE	VEGETATION TRANSPLANT COVER LOG BAMBOO TREATMENT AREA	VEGETATION PLOT FORD STREAM CROSSING	WETLAND RESTORATION WETLAND ENHANCEMENT	
		•				· · · · · · · · · · · · · · · · · · ·	
	AS-BUILT THALWEG (STA 100+85 TO 181+70)	DESIGN THALWEG ALIGNMENT (STA 10+85 TO 82+00) MAJOR (INDEX) CONTOUR	MINOR CONTOUR CONSERVATION EASEMENT CONSERVATION EASEMENT FENCE	BAMBOO BARRIER CROSS SECTION			
	110+00 10+00	10+00		X12 CROSS SECTION			

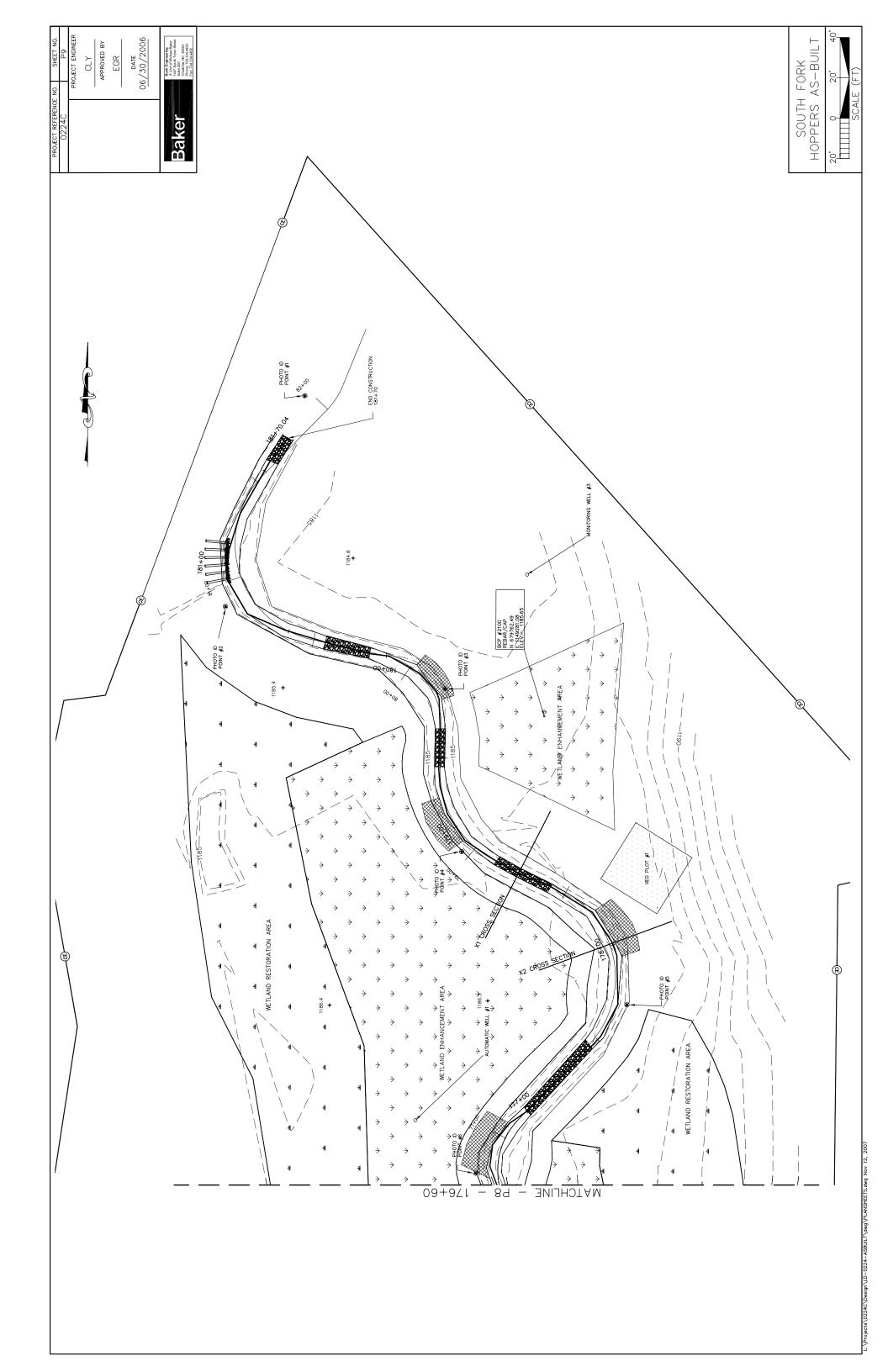

L: \Projects\02224C\Design\LD-0224-ASBUILT\dwg\PLANSHEETS.dwg Nov 12, 2007


SYMBOL SHEET









APPENDIX D

BASELINE STREAM SUMMARY FOR RESTORATION REACHES

South Fork Hoppers Creek Restoration Site - Mainstem Reach 1

Parameter	TISCS	S Gauge	Pogic	onal Curve	Interval	Pro-C	onstruction C	ondition				Refe	rence Rea	ch(es) Dat	a		
r ai ameter	USGS	Gauge	Kegic	mai Cui ve	e intervar	Fie-C	onstruction C	onanion	Big B	ranch, NO	CDOT	Sals I	Branch, Cl	linton	Spen	cer Creek,	Buck Eng.
Dimension - Riffle	Jacob	Norwood	LL	UL	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	61.3	32.0	7.0	26.0	24.4		11.3		19.3		21.5		8.7		10.7		11.2
Floodprone Width (ft)	96.3						119+			130			N/A		60		114+
Bankfull Mean Depth (ft)	4.7	3.1	0.9	2.3	1.5		2.0		1.8		2.1		1.2		1.6		1.8
Bankfull Max Depth (ft)	5.8						3.2		2.5		2.7		2.4		2.1		2.6
Bankfull Cross Sectional Area (ft2)	290.0	99.0	10.0	38.0	20.4		22.2		36.9		39.9		10.4		17.8		19.7
Width/Depth Ratio	13.0	10.3					5.7			10.6			7.3		5.8		7.1
Entrenchment Ratio	1.6						10.6			6.4					5.5		10.2
Bank Height Ratio	1.3						1.4									1.0	
Bankfull Velocity (fps)	3.9	2.6											5.2		4.9		5.9
Pattern																	
Channel Beltwidth (ft)									30.5		44	10		16	38.3		40.8
Radius of Curvature (ft)									42.3		63.1	13.1		29.6	10.9		14.6
Meander Wavelength (ft)									185		260				46		48
Meander Width Ratio										1.83					3.4		3.6
Profile					'			•									
Riffle Length (ft)																	
Riffle Slope (ft/ft)									0.015		0.019		0.0833			0.013	
Pool Length (ft)																	
Pool Spacing (ft)									97.5		179.8	35.5		47		77	
Substrate and Transport Parameters					'			•									
d16 / d35 / d50 / d84 / d95						< 0.06	3 / 0.2 / 0.75 /	15 / 45	0.13 / 0	0.3 / 1.9 / 5	50 / 100	4.8 / N	/A / 9.5 / 3	0 / N/A	<0.	062 / 3 / 8.	8 / 42 / 90
Reach Shear Stress (competency) lb/f2							0.84										
Stream Power (transport capacity) W/m2																	
Additional Reach Parameters					'			•									
Channel length (ft)	850							2531									
Drainage Area (SM)	25.7	7.2				0.74		0.93			1.9			0.2			0.96
Rosgen Classification	C4	Е					E4/5			E4			E4			E4	
Bankfull Discharge (cfs)	1140	254	30	235	84		102						53.6			97	
Sinuosity	1.06						1.0			1.1			1.1			2.3	
BF slope (ft/ft)	0.0025	0.0008					0.009										

South Fork Hoppers Creek Restoration Site - Mainstem Reach 1

Parameter		Design			As-built		1	MY-1 (2006	6)		MY-2 (2007)	
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)		16.0		16.3	18.0	19.7	15.92	17.32	18.93	16.29	17.2	18.15
Floodprone Width (ft)		35.2+		69.9	70.1	70.3	69.9	70.1	70.3	69.9	70.1	70.3
Bankfull Mean Depth (ft)		1.4		1.1	1.3	1.4	1.1	1.2	1.5	1.1	1.3	1.5
Bankfull Max Depth (ft)		2.0		1.9	2.1	2.4	1.8	2.1	2.7	1.8	2.2	2.6
Bankfull Cross Sectional Area (ft2)		22.0		18.6	22.7	26.8	17.7	21.6	27.7	17.1	21.7	26.3
Width/Depth Ratio	10.0		12.0	13.6	14.0	14.5	12.9	14.1	15.0	12.3	13.9	15.5
Entrenchment Ratio		>2.2		3.6	3.9	4.3	3.7	4.1	4.4	3.9	4.1	4.3
Bank Height Ratio		1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Bankfull Velocity (fps)		3.8			3.5			3.6			3.6	
Pattern												
Channel Beltwidth (ft)	56		96	56		96	56		96			
Radius of Curvature (ft)	32		54.5	32		55	32		54.5			
Meander Wavelength (ft)	112		176	112		176	112		176			
Meander Width Ratio	3.5		6	3.5		6.0	3.5		6			
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.01	0.015	0.02	0.01	0.015	0.02	0.01	0.015	0.02	0.01	0.02	0.03
Pool Length (ft)												
Pool Spacing (ft)	64	88	112	64	88	112	64	88	112	60	91	122
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95										0.1-23 / 1	7-35 / 34-40 / 54-8	30 / 65-130
Reach Shear Stress (competency) lb/f2		0.52			0.52			0.52				
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)		3665			3725			3725			2130	
Drainage Area (SM)	0.74		0.93	0.74		0.93	0.74		0.93	0.74		0.93
Rosgen Classification		C4			C			C			C	
Bankfull Discharge (cfs)	80	100	120	80	100	120	80	100	120			
Sinuosity		>1.2			1.5			1.5			1.4	
BF slope (ft/ft)		0.005			0.005			0.005			0.008	

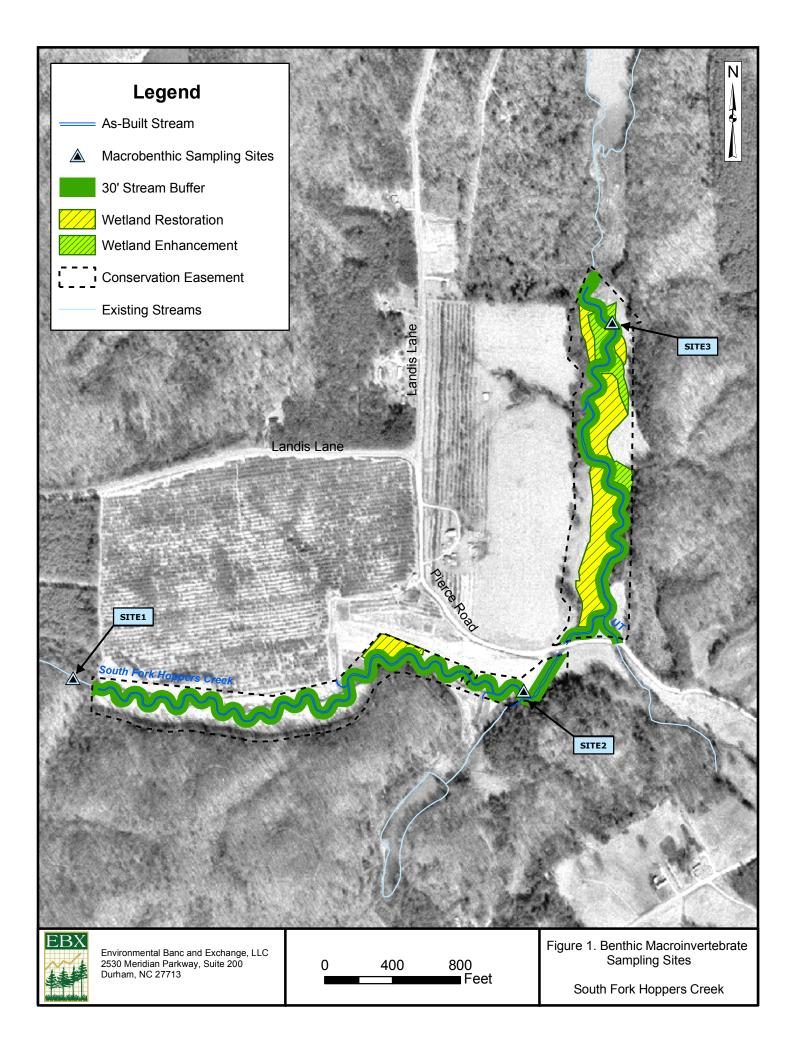
South Fork Hoppers Creek Restoration Site - Mainstem Reach 2, 3, & 4 $\,$

Domomoton	TIECE	Gauge	Doolo	nal Curve	Intonnal	Duo C	onstruction C	am distan				Refe	rence Rea	ch(es) Dat	a		
Parameter	USGS	Gauge	Kegio	mai Curve	miervai	rre-C	distruction C	onation	Big B	ranch, NO	CDOT	Sals I	Branch, Cl	inton	Spec	ner Creek	Buck Eng.
Dimension - Riffle	Jacob	Norwood	LL	UL	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	61.3	32.0	8.0	29.0	13.7	12.5	16.9	21.2	19.3		21.5		8.7		10.7		11.2
Floodprone Width (ft)	96.3					18.0		150+		130			N/A		60		114+
Bankfull Mean Depth (ft)	4.7	3.1	1.1	2.7	1.7	1.1	1.5	1.8	1.8		2.1		1.2		1.6		1.8
Bankfull Max Depth (ft)	5.8					2.3	2.4	2.4	2.5		2.7		2.4		2.1		2.6
Bankfull Cross Sectional Area (ft2)	290.0	99.0	14.0	52.0	26.7	20.4	23.1	25.7	36.9		39.9		10.4		17.8		19.7
Width/Depth Ratio	13.0	10.3				7.5	13.9	20.3		10.6			7.3		5.8		7.1
Entrenchment Ratio	1.6					1.2		>2.2		6.4					5.5		10.2
Bank Height Ratio	1.3					1.0	1.6	2.2								1.0	
Bankfull Velocity (fps)	3.9	2.6											5.2		4.9		5.9
Pattern																	
Channel Beltwidth (ft)									30.5		44	10		16	38.3		40.8
Radius of Curvature (ft)									42.3		63.1	13.1		29.6	10.9		14.6
Meander Wavelength (ft)									185		260				46		48
Meander Width Ratio										1.83					3.4		3.6
Profile																	
Riffle Length (ft)																	
Riffle Slope (ft/ft)									0.015		0.019		0.0833			0.013	
Pool Length (ft)																	
Pool Spacing (ft)									97.5		179.8	35.5		47		77	
Substrate and Transport Parameters																	
d16 / d35 / d50 / d84 / d95						< 0.063/0.1	7-3.5/0.36-5/1	0-40/17-128	0.13 / 0	0.3 / 1.9 / 5	0 / 100	4.8 / N	/A / 9.5 / 3	0 / N/A	<0.	062 / 3 / 8.	8 / 42 / 90
Reach Shear Stress (competency) lb/f2						0.14		0.94									
Stream Power (transport capacity) W/m2																	
Additional Reach Parameters																	
Channel length (ft)	850							2742									
Drainage Area (SM)	25.7	7.2				0.93		1.38			1.9			0.2			0.96
Rosgen Classification	C4	Е]	E4/5, G4/5c, C	4		E4			E4			E4	
Bankfull Discharge (cfs)	1140	254	38	300	112.4	35		118					53.6			97	
Sinuosity	1.06					1.03	1.34	1.65		1.1			1.1			2.3	
BF slope (ft/ft)	0.0025	0.0008				0.0024	0.007	0.012									

South Fork Hoppers Creek Restoration Site - Mainstem Reach 2, 3, & 4

Parameter		Design			As-built			MY-1 (2006)		MY-2 (2007)	
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)		18.0		16.6	17.3	18.1	14.43	19.42	23.67	15.56	18.3	21
Floodprone Width (ft)		39.6+		69.6	69.7	69.9	69.8	70.0	70.4	69.8	70.1	70.4
Bankfull Mean Depth (ft)		1.5		1.1	1.2	1.3	1.0	1.2	1.3	1.0	1.2	1.3
Bankfull Max Depth (ft)		2.3		2.2	2.4	2.6	2.3	2.4	2.5	2.2	2.4	2.5
Bankfull Cross Sectional Area (ft2)		27.0		20.3	24.9	29.5	18.4	22.9	26.1	19.9	22.6	25.2
Width/Depth Ratio		12.0		12.7	15.2	17.7	11.3	16.7	23.1	12.2	16.4	20.6
Entrenchment Ratio		>2.2		3.1	3.6	4.2	3.0	3.8	4.8	3.4	3.9	4.5
Bank Height Ratio		1.0		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Bankfull Velocity (fps)		2.9			3.1			2.6			2.6	
Pattern												
Channel Beltwidth (ft)	63		108	63		108	63		108			
Radius of Curvature (ft)	36		61.2	36		61	36		61			
Meander Wavelength (ft)	126		198	126		198	126		198			
Meander Width Ratio	3.5		6	3.5		6.0	3.5		6.0			
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.0045	0.00675	0.009	0.0045	0.00675	0.009	0.0045	0.00675	0.009	0.003	0.020	0.011
Pool Length (ft)												
Pool Spacing (ft)	72	99	126	72	99	126	72	99	126	58	93	128
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95										<0.063-0.12 / 0	0.063-1.5 / 0.16-7.	5 / 30-35 / 45-50
Reach Shear Stress (competency) lb/f2	0.25		0.57	0.25		0.57	0.25		0.57			
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)		3,340			3,301			3,301			1,432	
Drainage Area (SM)	0.93	1.155	1.38	0.93		1.38	0.93		1.38	0.93		1.38
Rosgen Classification		C4			C			C			C	
Bankfull Discharge (cfs)	80	100	120									
Sinuosity		1.4			1.4			1.4			1.3	
BF slope (ft/ft)		0.004		0.003		0.004	0.003		0.004		0.0073	

APPENDIX E MORPHOLOGY AND HYDRAULIC MONITORING SUMMARY – YEAR 2


		S	outh Fork I	loppers (reek R	estoratio	n Site :	Projec	t No. D0)4006-4						
				Reach	: Unnan	ned Trib	outary 1	(UT1)								
		Cross	s Section 7			Cros	ss Section	on 8								
I. Cross-Section Parameters			Pool				Riffle									
	MY1	MY2	MY3 MY	4 MY5	MY1	MY2	MY3	MY4	MY5							
Dimension																
BF Width (ft)	11.4	11.3			13.4	12.2										
Floodprone Width (ft)	65.5	66.9			47.9	43.0										
BF Cross Sectional Area (ft2)	10.1	11.2			9.1	7.1										
BF Mean Depth (ft)	0.9	1.0			0.7	0.6										
BF Max Depth (ft)	1.9	2.0			1.4	1.3										
Width/Depth Ratio	13.0	11.3			19.6	20.9										
Entrenchment Ratio	5.7	6.0			3.6	3.5										
Wetted Perimeter (ft)	13.2	13.2			14.7	13.4										
Hydraulic Radius (ft)	0.8	0.8			0.6	0.5										
Substrate	i															
d50 (mm)	-	0.25			-	0.19										
d84 (mm)	-	0.9			-	0.8										
		MY-1 (2	2006)		MY-2	(2007)			MY-3	(2008)		MY-4 (2	2009)		MY-5 (2	0010)
II. Reachwide Parameters	Min	Max	Mean	Min	Max	Me	ean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mear
Pattern																
Channel Beltwidth (ft)	-	-	-	-	-											
Radius of Curvature (ft)	-	-	-	-	_											
Meander Wavelength (ft)		-	-	-	_											
Meander Width Ratio		_	-	_	_											
Profile	1													1		
Riffle length (ft)	-	_	_	_	_									1		
Riffle Slope (ft/ft)		_	-	_	_									1		
Pool Length (ft)		15	12	_	_									1		
Pool Spacing (ft)		20	15	_	_									1		
Additional Reach Parameters	.~													1		
	_	_	179.3	_	_									1		
Valley Length (ft)				1										1		
Valley Length (ft)		_	203	-												
Channel Length (ft)	-	-	203 1.13	-												
Channel Length (ft) Sinuosity	-	-	1.13	-	-											
Channel Length (ft)	-			-	-	-										

			South Fork Ho	ppers C	reek Re	estoration Site	: Projec	t No. D	04006-4									
				Reach:	South 1	Fork Hoppers	Reach 2	2										
		Cros	s Section 1			Cross Sect	ion 2			Cros	ss Section	on 3			Cro	ss Section	on 4	
I. Cross-Section Parameters			Riffle			Pool					Riffle					Pool		
	MY1	MY2	MY3 MY4	MY5	MY1	MY2 MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
Dimension																		
BF Width (ft)	23.7	21			13.38	15.3			14.43	15.56				15.05	16.02			
Floodprone Width (ft)	70.42	70.42			69.95	70			69.83	69.9				69.88	69.9			
BF Cross Sectional Area (ft2)	24.2	21.46			17.17	18.68			18.41	19.9				19.07	21.2			
BF Mean Depth (ft)	1.0	1.02			1.28	1.22			1.28	1.28				1.27	1.32			
BF Max Depth (ft)	2.4	2.24			2.94	2.23			2.25	2.37				2.55	2.83			
Width/Depth Ratio	23.1	20.55			10.42	12.52			11.31	12.16				11.87	12.1			
Entrenchment Ratio	3.0	3.35			5.23	4.58			4.84	4.49				4.64	4.36			
Wetted Perimeter (ft)	25.71	23.04			15.94	17.74			16.99	18.12				17.59	18.66			
Hydraulic Radius (ft)	0.942	0.9314			1.077	1.053			1.084	1.098				1.084	1.136			
Substrate						0.005				0 =					0.10			
d50 (mm)	-	0.16			-	0.095			-	0.7				-	0.19			
d84 (mm)	-	0.35	2006)	1	-	0.35	1	3.07.0	- (2000)	34	ī	3.637.4	(2000)	-	15	3.637.5	(2010)	
II. Reachwide Parameters	Min	MY-1 (Mean	Min	MY-2 Max	(2007) Mean	Min	Max	(2008)	ean	Min	MY-4 Max	` /	ean	Min	MY-5 Max		lean
Pattern	MIII	Max	Mean	Min	Max	Mean	IVIIII	Max	IVI	ean	MIII	Max	IVI	ean	Min	Max	IVI	еап
Channel Beltwidth (ft)	63	108																
Radius of Curvature (ft)	36		-	_	-	-												
Meander Wavelength (ft)	126				-	_												
Meander Width Ratio	3.5		_	_	_	_												
Profile	3.3	o																
Riffle length (ft)	-	-	-	-	_	_												
Riffle Slope (ft/ft)	0.005	0.009	0.007	0.003	0.02	0.011												
Pool Length (ft)	-	-	-	-	-	-												
Pool Spacing (ft)	72	126	90	58	128	93												
Additional Reach Parameters																		
Valley Length (ft)	-	-	2447	-	-	1150												
Channel Length (ft)	-	-	3301	-	-	1432												
Sinuosity	-	-	1.35	-	-	1.25												
Water Surface Slope (ft/ft)	-	-	0.0047	-	-	0.0067												
BF Slope (ft/ft)	-	-	0.0035	-	-	0.0073												
Rosgen Classification	-	-	С	-	-	С												
				ich: Sou	th Fork	Hoppers Rea		nt'd)			α :							
I. Cross-Section Parameters		Cros	s Section 5 Riffle			Cross Sect Pool	10n 6			Cro	ss Section Pool	on 9						
1. Cross-section Parameters	MY1	MY2	MY3 MY4	MY5	MY1	MY2 MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	1				
Dimension	IVIII	IVI I Z	W113 W114	WIIJ	WIII	W112 W113	WI I 4	MIIS	IVI I I	IVI I Z	IVI I 3	IVI I 4	WHI					
BF Width (ft)	15.14	20.09			22.76	31.33			29.6	30.33								
Floodprone Width (ft)	69.77	69.8			70.52	70.5			69.71	69.76				I				
BF Cross Sectional Area (ft2)	20.77	25.2			40.74	51.22			71.57	75.57				I				
BF Mean Depth (ft)	1.37	1.25			1.79	1.63			2.42	2.49								
BF Max Depth (ft)	2.17	2.5			4.02	3.92			3.21	3.51				I				
Width/Depth Ratio	11.03	16.01			12.72	19.16			12.25	12.18				I				
Entrenchment Ratio	4.61	3.48			3.1	2.25			2.35	2.3				I				
Wetted Perimeter (ft)	17.88	22.59			26.34	34.59			34.44	35.31				I				
Hydraulic Radius (ft)	1.162	1.1155			1.547	1.481			2.078	2.14				I				
Substrate														I				
d50 (mm)	-	7.5			-	0.15			-	0.32								
d84 (mm)	-	30			-	2			-	12								

		S	outh Fork						No. D	04006-4									
				Reach	: South														
			Section 10			Cros	s Sectio	n 11			Cros	ss Sectio	on 12			Cros	s Section	13	
I. Cross-Section Parameters			Riffle				Pool					Riffle					Pool		
	MY1	MY2	MY3 MY	4 MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5
Dimension																			
BF Width (ft)		18.01			25.8	29.89				18.1	18.15				19.98	22.93			
Floodprone Width (ft)	70.24	70.22			69.81	69.85				70.29	70.26				70.2	70.22			
BF Cross Sectional Area (ft2)	27.68	26.27			33.17	35.29				22.71	21.75				30.69	31.55			
BF Mean Depth (ft)		1.46			1.29	1.18				1.25	1.20				1.54	1.38			
BD Max Depth (ft)	2.69	2.57			2.84	2.74				1.95	1.89				3.19	2.87			
Width/Depth Ratio		12.34			20.06	25.24				14.43	15.14				13	16.67			
Entrenchment Ratio		3.9			2.71	2.34				3.88	3.87				3.51	3.06			
Wetted Perimeter (ft)	21.85	20.93			28.38	32.25				20.6	20.55				23.06	25.69			
Hydraulic Radius (ft)	1.267	1.2551			1.169	1.094				1.102	1.058				1.331	1.228			
Substrate																			
d50 (mm)	-	34			-	0.27				-	36				-	0.3			
d84 (mm)	-	80			-	0.9				-	55				-	0.52			
II. Reachwide Parameters		MY-1 (2	2006)		MY-2	(2007)				(2008)			MY-4	(2009)			MY-5 (
The Reactivide Farameters	Min	Max	Mean	Min	Max	Me	ean	Min	Max	Me	ean	Min	Max	M	ean	Min	Max	M	ean
Pattern																			
Channel Beltwidth (ft)	56	96	-	-	-		-												
Radius of Curvature (ft)	32	54.4	-	-	-		-												
Meander Wavelength (ft)	112	176	-	-	-		-												
Meander Width Ratio	3.5	6	-	-	-		-												
Profile																			
Riffle length (ft)		-	-	-	-		-												
Riffle Slope (ft/ft)	0.01	0.02	0.015	0.01	0.03	0.0	02												
Pool Length (ft)	-	-	-	-	-		-												
Pool Spacing (ft)	64	112	88	60	122	9	1												
Additional Reach Parameters																			
Valley Length (ft)		-	2527	-	-	15													
Channel Length (ft)		-	3725	-	-		30												
Sinuosity		-	1.47	-	-	1													
Water Surface Slope (ft/ft)		-	0.0068	-	-	0.0													
BF Slope (ft/ft)	-	-	0.005	-	-	0.0	078												
Rosgen Classification	-	-	C	-	-	(2												

			South F	ork Ho	ppers C	reek R	estoratio	n Site :	Projec	t No. Do	04006-4						
				Rea	ch: Sou	th Fork	Hopper	rs Reac	h 1 (Co	nt'd)							
		Cross	Section	n 14			Cros	s Section	n 15			Cros	s Sectio	n 16			
I. Cross-Section Parameters			Riffle					Riffle					Pool				
	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5		
Dimension																· · · · · · · · · · · · · · · · · · ·	
BF Width (ft)	15.92	16.71				16.33	16.29				13.68	14.01					
Floodprone Width (ft)	70.08	70.07				69.86	69.88				69.01	70.03					
BF Cross Sectional Area (ft2)	18.18	18.91				17.74	17.13				12.16	11.35					
BF Mean Depth (ft)	1.14	1.13				1.09	1.05				0.89	0.81					
BD Max Depth (ft)	1.76	1.93				1.85	1.82				1.53	1.8					
Width/Depth Ratio	13.94	14.77				15.03	15.49				15.39	17.29					
Entrenchment Ratio	4.4	4.19				4.28	4.29				5.04	5					
Wetted Perimeter (ft)	18.2	18.97				18.51	18.39				15.46	15.63					
Hydraulic Radius (ft)	0.999	0.9968				0.958	0.931				0.787	0.726					
Substrate																	
d50 (mm)	-	35				-	40				-	0.52					
d84 (mm)	-	54				-	60				-	7.5					

APPENDIX F BENTHIC MACROINVERTEBRATE MONITORING DATA

Site 3 – looking upstream Site 3 – looking downstream

Benthos Data for South Fork Hoppers Creek Collected on January 16-17, 2007

SPECIES	Tolerance Values	Functional Feeding Group	Site 1 Reference 1/17/07	Site 2 U/S Hoppers 1/16/07	Site 3 D/S Hoppers 1/16/07
ANNELIDA		Group	1/1//0/	1/10/07	1/10/07
Oligchaeta					
Naididae					
Nais spp.	8.9	GC			R
Tubificidae	7.1	GC		С	C
ARTHROPODA	/.1	GC		C	C
Crustacea	55				D
Hydracarina	55				R
Isopoda Asellidae					
	0.1	GG.			
Caecidotea spp.	9.1	CG	R		
Insecta					
Coleoptera					
Dryopidae					
Helichus spp.	4.6	SH	\mathbf{C}	R	
Dytiscidae					
Laccophilus spp.	10	PR		С	R
Elmidae					
Microcylloepus pusillus	2.1	GC	C		
Optioservus ovalis	2.4	SC	A		
Promoresia spp.	2.4	SC	R		
Eubriidae		2 5			
Ectopria nervosa	4.2	SC	R		
Haliplidae		50			
Haliplus spp.	9.7	SH?		R	
Hydrophilidae	7.1	511.		K	
Enochrus spp.	8.8	GC		R	
Tropisternus spp.	9.7	PR		R	
Ptilodactylidae	7	111			
Anchytarsus bicolor	3.6	SH	R		
Staphylinidae	n/a	PR	R		
Diptera					
Ceratopogonidae					
Palpomyia complex	6.9	PR			R
Chironomidae					
BrillIa spp.	5.2	SH	R		
Conchapelopia grp	8.4	PR	R	A	A
Corynoneura spp.	6.0	GC		R	R
Cricotopus bicinctus	8.5	SH		C	
Demicryptochironomus spp.	2.1	GC	R	_	
Diamesa spp.	8.1	GC		A	С
Lopescladius spp.	1.7	GC		R	
Microtendipes spp.	5.5	FC		C	
Parametriocnemus					_
lundbecki	3.7	GC		С	R

Polypedilum flavum Polypedilum illinoense grp. Potthastia longimana Rheotanytarsus spp. Thienemanniella spp. Tvetenia bavarica Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp. Limnophila spp.	Tolerance Values 4.9 9.0 6.5 5.9 5.9 3.7 2.6 6.0 6.0 4.3 0.0 4.3 n/a 7.3	Feeding Group SH? SH? GC FC GC GC FC FC PR PR PR	C C C R	U/S Hoppers 1/16/07 C C C R R R C C	D/S Hoppers 1/16/07 C C R C
Polypedilum illinoense grp. Potthastia longimana Rheotanytarsus spp. Thienemanniella spp. Tvetenia bavarica Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	4.9 9.0 6.5 5.9 5.9 3.7 2.6 6.0 6.0 4.3 0.0 4.3 n/a	SH? SH? GC FC GC GC FC FC PR PR PR	C C R	C C R R R	C C R
Polypedilum illinoense grp. Potthastia longimana Rheotanytarsus spp. Thienemanniella spp. Tvetenia bavarica Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	9.0 6.5 5.9 5.9 3.7 2.6 6.0 6.0 4.3 0.0 4.3 n/a	SH? GC FC GC GC FC FC FC FC FC	C C R	C C R R C	C R
Potthastia longimana Rheotanytarsus spp. Thienemanniella spp. Tvetenia bavarica Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	6.5 5.9 5.9 3.7 2.6 6.0 6.0 6.0 4.3 0.0 4.3 n/a	GC FC GC FC FC PR PR	C C R	C R R	C R
Rheotanytarsus spp. Thienemanniella spp. Tvetenia bavarica Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	5.9 5.9 3.7 2.6 6.0 6.0 4.3 0.0 4.3 n/a	FC GC FC FC PR PR	C C R	R R R	C R
Thienemanniella spp. Tvetenia bavarica Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	5.9 3.7 2.6 6.0 6.0 4.3 0.0 4.3 n/a	GC GC FC FC PR PR PR	C C R	R R C	C R
Tvetenia bavarica Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	3.7 2.6 6.0 6.0 4.3 0.0 4.3 n/a	GC GC FC GC PR PR PR	C R	R	R
Dixidae Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	2.6 6.0 6.0 4.3 0.0 4.3 n/a	GC FC GC PR PR PR	C R	С	R
Dixa spp. Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	6.0 6.0 4.3 0.0 4.3 n/a	FC FC GC PR PR PR	C R	С	С
Simulidae Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	6.0 6.0 4.3 0.0 4.3 n/a	FC FC GC PR PR PR	C R	С	С
Prosimulium spp. Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	6.0 4.3 0.0 4.3 n/a	GC PR PR PR	R		
Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	6.0 4.3 0.0 4.3 n/a	GC PR PR PR	R		
Simulium spp. Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	6.0 4.3 0.0 4.3 n/a	GC PR PR PR	R		
Tipulidae Antocha spp. Dicranota spp. Hexatoma spp.	4.3 0.0 4.3 n/a	GC PR PR PR			
Antocha spp. Dicranota spp. Hexatoma spp.	0.0 4.3 n/a	PR PR PR	C	С	A
Dicranota spp. Hexatoma spp.	0.0 4.3 n/a	PR PR PR	С		71
Hexatoma spp.	4.3 n/a	PR PR			1
	n/a	PR	<u> </u>	1	R
Emmophica spp.			R		N N
Tipula spp.	7.0	SH	C	R	A
Ephemeroptera		511			
Baetidae					
Acentrella spp.	4.0	GC		A	С
Centroptilum spp.	6.6	GC		A	
Ephemerellidae					
Ephemerella spp.	2	GC	R	A	A
Eurylophella spp.	4.3	SC		R	R
Heptageniidae					
Stenonema modestum	5.5	SC	\mathbf{A}	A	A
Stenonema pudicum	2.0	SC?	С	С	
Isonychiidae					
Isonychia spp.	3.5	FC	R		
Megaloptera					
Corydalidae					
Corydalus cornutus	5.2	PR		R	
Nigronia fasciatus	5.6	PR	R		R
Nigronia serricornis	5.0	PR	C		R
Odonata					
Aeshnidae					
Basiaeschna janata	7.4	PR			R
Boyeria vinosa	5.9	PR		R	R
Calopterygidae					
Calopteryx spp.	7.8	PR	R	С	A
Coenagrionidae	. •0				
Argia spp.	8.2	PR		R	
Cordulegastridae	U•#	110		1	
Cordulegaster spp.	5.7	PR	R		R
Gomphidae					
Lanthus spp.	1.8	??	R		
Ophiogomphus spp.	5.5	PR	R	A	A

SPECIES	Tolerance Values	Functional Feeding Group	Site 1 Reference 1/17/07	Site 2 U/S Hoppers 1/16/07	Site 3 D/S Hoppers 1/16/07
Plecoptera		_			
Capniidae					
Allocapnia spp.	2.5	SH	С		
Chloroperlidae					
Suwallia spp.	1.5	PR	С		
Peltoperlidae					
Tallaperla spp.	1.2	??	C	R	
Perlidae					
Acroneuria abnormis	2.1	PR	R		
Eccoptura xanthenes	3.7	??	R		R
Perlodidae					
Clioperla clio	4.7	??			R
Diploperla duplicata	2.7	??	C	R	
Isoperla bilineata	5.4	??	A	R	R
Malirekus hastatus	1.2	??	C		
Pteronarcyidae					
Pteronarcys spp.	1.7	SH	R		
Taeniopterygidae					
Strophopteryx spp.	2.7	??	R		C
Trichoptera					
Glossosomatidae					
Glossosoma spp.	1.6	SC	R	R	
Hydropsychidae					
Cheumatopsyche spp.	6.2	FC	C	A	C
Diplectrona modesta	2.2	FC	C		
Hydropsyche betteni	7.8	FC		A	A
Symphitopsyche sparna	2.7	??	R		
Lepidostomatidae					
Lepidostoma spp.	0.9	SH	C		
Limnephilidae					
Pycnopsyche spp.	2.5	SH	C	С	R
Philopotamidae					_
Chimarra spp.	2.8	FC		A	R
Dolophilodes spp.	0.8	GC	R		
Rhyacophilidae	1.0	22			
Rhyacophila fuscula	1.9	??	R		
Rhyacophila nigrita	0.0	??	R		
Rhyacophila carolina	0.0	??	R		
Uenoidae	0.1	20	D	C	
Neophylax mitchelli	0.1	??	R	С	A
MOLLUSCA					
Gastropoda					
Lymnaeidae					
Pseudosuccinea columella	7.7	SC		R	R
Physidae					
Physella spp.	8.8	SC		C	A
Pleuroceridae					
Elimia spp.	2.5	SC	A	C	A

SPECIES	Tolerance Values	Functional Feeding Group	Site 1 Reference 1/17/07	Site 2 U/S Hoppers 1/16/07	Site 3 D/S Hoppers 1/16/07
Total Taxa Richness			50	43	40
EPT Taxa Richness			21	15	13
Total Biotic Index			3.47	5.58	5.53
EPT Biotic Index			3.17	4.50	3.93
Dominant in Common Taxa				23%	23%

Notes: Tolerance Values: ranges from 0 (least tolerant to pollution) to 10 (most tolerant to pollution).

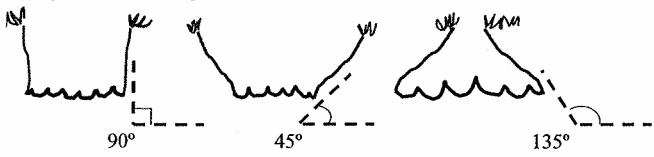
Functional Feeding Group: CG = Collector-Gatherer, FC = Filterer-Collector, OM = Omnivore, PR = Predator, SC = Scraper, SH = Shredder.

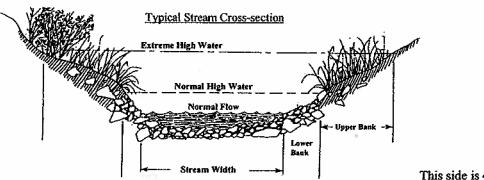
Abundance: R = Rare (1-2 individuals); C = Common (3-9 individuals); A = Abundant (10 or more individuals).

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

	84
TOTAL SCORE	34

Biological Assessment Unit, DWQ	
Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an	a
and the road direction starting shows the bridge nool and the road right-of-way. The segment which is assessed should represent a	iverage
and the stream. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, sele	ci me
description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two description	ons,
select an intermediate score. A final habitat score is determined by adding the results from the different metrics.	
Select an intermediate score. A main habitat score to section to the section of t	
Stream South Fork Hoppers Location/road: 5the 1 (Road Name Location) County McDowall	
Date 1/17/07 CC# Basin Contanto on Subbasin 11-32-2-9-1	
Observer(s) Type of Study: Beathos Basinwide Special Study (Describe)	
TO THE CASE TO THE PROPERTY OF	
Latitude 0 + 1520.5 Longitude 1140210, 4 Ecological. Clivit At 1 Li State Best Clivit At 1	
Observer(s) Type of Study: Fish Benthos Basinwide Special Study (Describe)	
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include	what
Physical Characterization: Visible land use refers to miniculate area that you can see it out sampling restriction	
you estimate driving thru the watershed in watershed land use.	
Visible Land Use: %Forest 10 %Residential %Active Pasture % Active Crops 40 %Fallow Fields % Commercial %Industrial %Other - Describe:	
Visible Land Ose: 3PC /offolest 10 /offolest	
40 % Pallow Fields	
Watershed land use: ☐Forest ☐Agriculture ☐Urban ☐ Animal operations upstream	
Width: (meters) Stream 1.5 Channel (at top of bank) 4 Stream Depth: (m) Avg 0.15 Max 0.2	
🗂 ur: td	
☐ Width variable ☐ Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) /. 5	
Bank Height (from deepest part of Title to top of bank-first flat surface you stand on). (my_7: 5	
Bank Angle: (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel,	< 90°
indicate slope is away from channel. NA if bank is too low for bank angle to matter.)	
☐ Channelized Ditch ☐ Channel filled in with sediment ☐ Channel filled in with sediment ☐ Channel filled in with sediment	
Bar development Begant overbank denosits Bar development Buried structures Begant overbank denosits	
☐ Recent overbank deposits ☐ Excessive periphyton growth ☐ Heavy filamentous algae growth ☐ Green tinge ☐ Sewage smell	
Excessive periphyton growth Heavy manientous argae growth Little and control structure [Rerm/levee]	
Manmade Stabilization: MN DY: DRip-rap, cement, gabions D Sediment/grade-control structure DBerm/levee	
Flow conditions: OHigh Normal OLow	
Turbidity: O'Clear O'Slightly Turbid O'Turbid O'Tannic O'Milky O'Colored (from dyes)	
Good potential for Wetlands Restoration Project?? YES ZINO Details	
Channel Flow Status	•
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed	
B. Water fills >75% of available channel, or <25% of channel substrate is exposed	
A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed	
D. Root mats out of water	
E. Very little water in channel, mostly present as standing pools.	
E. Very little water in channel, mostly present as standing pools	
Weather Conditions: 30 Sunny Photos: IN MY Digital II35mm	
Remarks:	


UTM NAD 83 from lopo 17 421324E 3937445 N


I. Channel Modification					core
A. channel natural, frequent bends	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5	
B. channel natural, infrequent bends (channel	lization coul	ld be old)	•••••	بهر	
C. some channelization present			,.,,,	(3)	}
D. more extensive channelization, >40% of st	tream disrup	pted	***************	2	
E. no bends, completely channelized or rip ra	ipped or gab	oioned, etc	*****************	0	
☐ Evidence of dredging ☐ Evidence of desnagging=no lar	rge woody d	lebris in stream 🏻 🗀	Banks of unifo	orm shape/heigh	at 👝
Remarks				Subtot	al <u> </u>
II. Instream Habitat: Consider the percentage of the read reach is rocks, 1 type is present, circle the score of 17. Def begun to decay (not piles of leaves in pool areas). Mark as X Rocks Rocks Macrophytes Sticks and leafpace	inition: leat s Rare, Com ks <u>R</u> Sna	fpacks consist of o mnon, or Abundant ags and logs	lder leaves that t. Undercut ban	are packed togo	ether and have
AMOUNT OF REACH FAVO					
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	(19)	X	11	7	
2 types present			10	6	
1 type present		13	9	5	19
No types present	0				. X
☐ No woody vegetation in riparian zone Remarks_				Subt	iotal
III. Bottom Substrate (silt, sand, detritus, gravel, cobble for embeddedness, and use rocks from all parts of riffle-loc A. substrate with good mix of gravel, cobble at 1. embeddedness <20% (very little sand, 2. embeddedness 20-40%	ok for "mud nd boulder usually onl	line" or difficulty s y behind large bou	extracting rock	S. Sc. Sc. Sc. Sc. Sc. Sc. Sc. Sc. Sc. S	sore i i i velocities
associated with pools are always slow. Pools may take the large high gradient streams, or side eddies. A. Pools present 1. Pools Frequent (>30% of 200m area surveyed)	form of "po	ocket water", small	pools behind b	oulders or obst	ructions, in core
a. variety of pool sizes				10)
b. pools about the same size (indicates po	ools filling i	n).			
2. Pools Infrequent (<30% of the 200m area surve	eved)	,			
a. variety of pool sizes	J ~~/			6	
b. pools about the same size)
B, Pools absent		**************	*****		11
				Subtotal	7 00
☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sinl Remarks				over wader dep	th 38
				ra	'KC TOΩK →

V. Riffle Habitats Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequet Score		Infrequent	
	12	1	
	7		
B. riffle as wide as stream but riffle length is not 2X stream width	3		
C. riffle not as wide as stream and riffle length is not 2X stream width	,		
D. riffles absent	Cut	ototal (C	
Channel Slope: Typical for area	Sut	ototai 1702	
VI. Bank Stability and Vegetation FACE UPSTREAM	Left Bank	Rt. Bank	
FACE OFFICIAN	Score	Score	
	<u>Deore</u>	Coore	
A. Banks stable 1 little evidence of erosion or bank failure(except outside of bends), little potential for crosi	on 7	7	
B. Erosion areas present	(A)		
1. diverse trees, shrubs, grass; plants healthy with good root systems	(6)	()	
2. few trees or small trees and shrubs; vegetation appears generally healthy	3	5 3 2	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3	3	
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow	v 2		
5. little or no bank vegetation, mass erosion and bank failure evident	V	()	
Remarks	1	Cotal 12	
		الممالة المستندية	le assé
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sur	race. Canop	y would block	K OUL
sunlight when the sun is directly overhead. Note shading from mountains, but not use to score th	is metric.	C	
		Seore	
A. Stream with good canopy with some breaks for light penetration	*****		
B. Stream with full canopy - breaks for light penetration absent		Cates.	
C. Stream with partial canopy - sunlight and shading are essentially equal	******	/	
D. Stream with minimal canopy - full sun in all but a few areas	****	2	
E. No canopy and no shading	******	0	
Remarks		Subtotal_	01.
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly e	l floodplain) nter the strea	. Definition: A	A brea aths
down to stream, storm drains, uprooted trees, otter slides, etc.	Lft. Bank	Rt. Bank	
FACE UPSTREAM	Score	Score	
Dominant vegetation: ☐ Trees ☐ Shrubs ☐ Grasses ☐ Weeds/old field ☐ Exotics (kudzu, etc)	Score	Score	
A. Riparian zone intact (no breaks)	5	.5	
1. width > 18 meters	্যুক্ত	a de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición de la composición dela composición de la composición dela c	
2. width 12-18 meters	Car.	1300	,
3. width 6-12 meters	3		
4. width < 6 meters	2	Z	
B. Riparian zone not intact (breaks)			
1. breaks rare	(F)	(A)	
a. width > 18 meters	(4)	(4)	
b. width 12-18 meters	3	3	
c. width 6-12 meters	2	2	
d. width < 6 meters	1	1	
2. breaks common	_	-	
a. width > 18 meters	3	3	
b. width 12-18 meters	2	2	
c. width 6-12 meters	1	1	
d, width < 6 meters	0	00	
Remarks	r	Cotal 8	
TO	Page To		16
☐ Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream. TO	LASS GOOM	Chal	

Supplement for Habitat Assessment Field Data Sheet

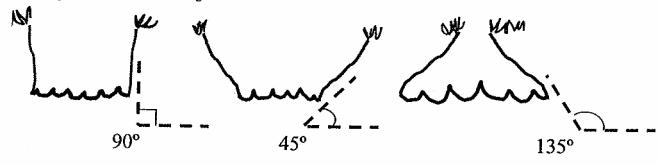
Diagram to determine bank angle:

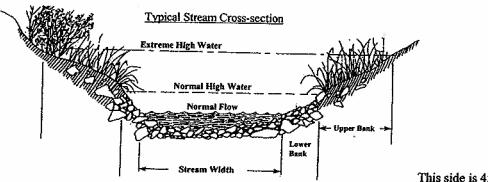
This side is 45° bank angle.

Site Sketch:

Other comments:	. Ke j was	100, 100, 100, 100, 100, 100, 100, 100,				
			1 cultilation	= 1=171 ++17 = 19	¥ 0	

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams


Righariest Assessment Unit DWO
Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an unstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average
stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions,
Stream Bally Fork Location/road: 5762 (Road Name Hopewall County Broke) Date 17/07 CC# Basin Contained Subbasin 11-34-8-(3) Observer(s) CDM Type of Study: DFish Benthos DBasinwide DSpecial Study (Describe) Latitude 775231. Longitude 190216 & Ecoregion: DMT DP DSlate Belt DTriassic Basin 32.106
Date 1/17/07 CC# Basin Cost and Subbasin 11-34-8-(3)
Observer(s) COM Type of Study: D Fish Benthos D Basinwide D Special Study (Describe)
-Latitude 775 231.4 Longitude 19 216 6 Ecoregion: DMT DP Slate Belt D Triassic Basin
Water Quality: Temperature 8.4 °C DO 3.46 mg/l Conductivity (corr.) SO uS/cm pH 5.4-1
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 75 %Forest 25 %Residential %Active Pasture % Active Crops %Fallow Fields %Commercial %Industrial %Other - Describe:
Watershed land use: Forest Agriculture II Urban II Animal operations upstream Width: (meters) Stream 2 m Channel (at top of bank) 4.5 Stream Depth: (m) Avg Max A4
Width: (meters) Stream Stream Channel (at top of bank) 4.5 Stream Depth: (m) Avg Max A Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: 60 or NA (Vertical is 90°, horizontal is 0° Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.)
El Channelland Ditch
☐ Recent overbank deposits ☐ Bar development ☐ Buried structures ☐ Excessive periphyton growth ☐ Heavy filamentous algae growth ☐ Green tinge ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Exposed bedrock ☐ Excessive Description of the structures ☐ Exposed bedrock ☐ Exposed Exposed Bedrock ☐ Exposed Bedrock
Manmade Stabilization: MN UY: URip-rap, cement, gabions U Sediment/grade-control structure Liberth/levee
Flow conditions
Good potential for Wetlands Restoration Project?? YES NO Details When waked in Channel Flow Status
Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
D. Root mats out of water
Weather Conditions: NNN Cold Photos: DN XIY Digital D35mm
Remarks:


I. Channel Modification				Score	
A. channel natural, frequent bends		***************************************		<u> </u>	
B. channel natural, infrequent bends (channe	lization could	be old)		4	
C. some channelization present	*************		******************		
D. more extensive channelization, >40% of s	stream disrupte	ed	******************	Z	
E. no bends, completely channelized or rip ra	apped or gabio	oned, etc			
☐ Evidence of dredging ☐ Evidence of desnagging=no last	rge woody dei	oris in stream L	iBanks of unitor	Subtotal 5	
Remarks				Suototai 9	
II. Instream Habitat: Consider the percentage of the react reach is rocks, 1 type is present, circle the score of 17. Det begun to decay (not piles of leaves in pool areas). Mark as X Rocks Racrophytes Sticks and leafpace	finition: leafp s Rare, Comm	acks consist of o non, or Abundant	lder leaves that a <u>t.</u>	are packed together and	f the I have
	•				
AMOUNT OF REACH FAVO	RABLE FO			ER	
	>70%	40-70%	20-40%	<20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16 (14	2	8	
3 types present		15	11	7	
2 types present	18	14	10	6	
1 type present	17	in act a	9	5	
No types present	0	lungs Substrati	e. 11 1	Subtotal 14	
No types present	provides	34 19 21 KROCK 1	- Khan	Subtotat	
III. Bottom Substrate (silt, sand, detritus, gravel, cobble for embeddedness, and use rocks from all parts of riffle-loc A. substrate with good mix of gravel, cobble a 1. embeddedness <20% (very little sand, 2. embeddedness 20-40%	ok for "mud lind boulders, usually only	ne" or difficulty behind large bou	extracting rocks	Score 15	at riffle
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies. A. Pools present 1. Pools Frequent (>30% of 200m area surveyed) a. variety of pool sizes	form of "pocl	ket water", small	pools behind bo	oulders or obstructions, Score 10	in
b. pools about the same size (indicates po			*********	8	
2. Pools Infrequent (<30% of the 200m area surve				6	
a. variety of pool sizes	************	***************	·····	,0 A	
b. pools about the same size B. Pools absent					
				Continued Q	
17 Pool bottom boulder-cobble=bard XI Rottom sandy-sin	k as von walk	☐ Silt bottom	Some nools o	ver wader denth	
Pool bottom boulder-cobble=hard & Bottom sandy-sing Remarks 15th (some in book)	ar no jou man	~,,, _ ~,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Join pools o	N	001
10 2 - 6 20 M / Sock 12 106 - 3		······································		Page Total	

V. Riffle Habitats Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequen	it Riffles	Infrequent	
Scor	e Scor	<u>'e</u>	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16	12		
B. riffle as wide as stream but riffle length is not 2X stream width	7		
C. riffle not as wide as stream and riffle length is not 2X stream width	3		
D. riffles absent		£	
Channel Slope: □Typical for area □Steep=fast flow □Low=like a coastal stream	Su	ibtotal /4	
Chainter Stope. 11 ypicar for area. 11 Stocep-rast flow 1120 W flate a committee and			
VI. Bank Stability and Vegetation		w. w. s	
FACE UPSTREAM	Left Bank	Rt. Bank	
	Score	Score	
A. Banks stable			
1. little evidence of erosion or bank failure(except outside of bends), little potential for crosi-	on 7	7	
B. Erosion areas present		_	
1. diverse trees, shrubs, grass; plants healthy with good root systems	. 6	6	
2. few trees or small trees and shrubs; vegetation appears generally healthy	5	③ 3 2	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	3	3	
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow	<i></i> 2	2	
5. little or no bank vegetation, mass erosion and bank failure evident	0	0 1	
		Total <u>//</u>	
Remarks			
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surf	ace Cano	w would bloc	k out
VII. Light Penetration Canopy is defined as free or vegetative cover directly above the site and source the	is metric	yy would bloc	K Out
sunlight when the sun is directly overhead. Note shading from mountains, but not use to score the	is monto.	Score	
to the second se		10	
A. Stream with good canopy with some breaks for light penetration	*****		
B. Stream with full canopy - breaks for light penetration absent		(1)	
C. Stream with partial canopy - sunlight and shading are essentially equal	*******	2	
D. Stream with minimal canopy - full sun in all but a few areas	*******	0	
E. No canopy and no shading	********	U ~	
Remarks		Subtotal	
VIII. Riparian Vegetative Zone Width			
Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond	floodplain). Definition: .	A break
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly en	nter the stre	am, such as p	aths
down to stream, storm drains, uprooted trees, otter slides, etc.			
FACE UPSTREAM	Lft. Bank		
Dominant vegetation: In Trees In Shrubs In Grasses In Weeds/old field In Exotics (kudzu, etc.)	Score	Score	
A. Riparian zone intact (no breaks)	Park -		
1. width > 18 meters	(5)	5	
2. width 12-18 meters	4	4	,
3. width 6-12 meters	3	3	
4. width < 6 meters	2	2	
B. Riparian zone not intact (breaks)			
1. breaks rare			
a. width > 18 meters	4	4	
b. width 12-18 meters	3	3_	
c. width 6-12 meters.	2	(2)	
d. width < 6 meters	1	ĭ	
2. breaks common	-		
a. width > 18 meters	3	3	
b. width 12-18 meters	2	2	
** · · · · · · · · · · · · · · · · · ·	1	1	
c. width 6-12 meters	Ô	ń	
d. width < 6 meters	-	Total 7	
Remarks			
	p _{age} T	otal_31	
D Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	AL SCOR	E 7	
i i checiamer-torm fuled dui dui scare diessi i maich subjective dibilion-alvoical sucall	1.850 いししか	(()	

Supplement for Habitat Assessment Field Data Sheet

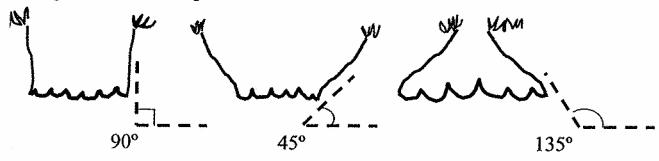
Diagram to determine bank angle:

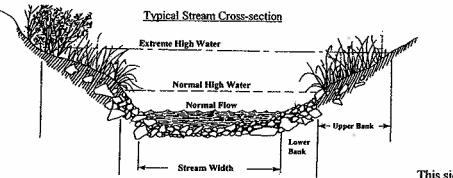
This side is 45° bank angle.

Site Sketch:

Other comments:	

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams


	Biological Assessment Unit, DWQ
	Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an
	upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the
	description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions,
	select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
	select an infermediate score. A final habital score is determined by adding the results from the different method.
	Stream South Forck Hopper Location/road: Site 3 (Road Name Pilke Rd) County Mc Danell
	- 1/11/07 004 Paris Cata 2006 1 Subbasia 1 77-7-0 1
	COM AMC
	Observer(s) Type of Study: U Fish Albenthos U Basinwide USpecial Study (Describe)
U.	William Date of the Princip Rock of Princip Ro
	Latitude 17 9/97 / Longitude 17 12/5. 6 Ecoregion: 11 WI AJP 11 State Ben 11 I I I I I I I I I I I I I I I I I I
	Observer(s) Type of Study: Fish Denthos Basinwide Special Study (Describe) Latitude 1992 Longitude 1993 Ecoregion: MT Slate Belt Triassic Basin Water Quality: Temperature 1993 Conductivity (corr.) 50 µS/cm pH 6.03
	Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what
	you estimate driving thru the watershed in watershed land use.
	Elo Marine Compa
	Visible Land Use:
4	%Fallow Fields% Commercial%Industrial%Other - Describe:
	The Manual Constitution of Assignations and Assignations
	Watershed land use: Afforest Agriculture UUrban II Animal operations upstream 15 ft
	Width: (meters) Stream 1.5m Channel (at top of bank) Stream Depth: (m) Avg Max
	Width variable
	Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
	• •
	Bank Angle: 30 ° or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90°
	indicate slope is away from channel. NA if bank is too low for bank angle to matter.)
	Character 4 Disch
	□ Channelized Ditch □ Channelized Ditch □ Deeply incised-steep, straight banks □ Both banks undercut at bend □ Recent overbank deposits □ Buried structures □ Exposed bedrock □ Sewage smell
	☐ Recent overbank deposits >☐Bar development ☐Buried structures ☐Exposed bedrock
	☐ Excessive periphyton growth ☐ Heavy filamentous algae growth ☐ Green tinge ☐ Sewage smell
	Manmade Stabilization: IN MY: DRin-ran cement, gabions I Sediment/grade-control structure Liberm/levee Natural class
	Flow conditions: Thigh Normal Thow
	Turbidity Clear M Slightly Turbid Turbid Tannic DMilky Colored (from dyes) Washing
	Good notential for Wetlands Restoration Project?? WYES INO Details 1 Vetternes cheeled
	Flow conditions: High Normal Low
	Useful especially under abnormal or low flow conditions.
	A. Water reaches base of both lower banks, minimal channel substrate exposed
	B. Water fills >75% of available channel, or <25% of channel substrate is exposed
	C. Water fills 25-75% of available channel, many logs/snags exposed
	D. Root mats out of water
	E. Very little water in channel, mostly present as standing pools
	Weather Conditions: SUNUM Photos: IN MY XI Digital II35mm
	l e e e e e e e e e e e e e e e e e e e


I. Channel Modification				Score
A. channel natural, frequent bends	*******	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*************************	
B. channel natural, infrequent bends (channel	zation could	i be old)	*******	4
C. some channelization present				3
D. more extensive channelization, >40% of st	ream disrup	ted		2
E. no bends, completely channelized or rip rap	pped or gabi	oned, etc		0
☐ Evidence of dredging ☐ Evidence of desnagging=no lar	ge woody de	ebris in stream [Banks of unifor	rm shape/height
Remarks Natural channel design				Subtotal
, , ,				C.1 IC>700/ . C.1
II. Instream Habitat: Consider the percentage of the reac	h that is favo	orable for bentho	s colonization or	tish cover. If >/0% of the
reach is rocks, 1 type is present, circle the score of 17. Defi	nition: leaf	packs consist of c	older leaves that	are packed together and have
begun to decay (not piles of leaves in pool areas). Mark as	Rare, Com	non, or Abundan	<u>t.</u>	
\mathbf{S} \mathbf{C}	0 -	0		
Rocks XMacrophytes RSticks and leafpack	s Na ₁ Sna ₁	gs and logs <u>N</u>	_Undercut bani	is or root mats
	DADYE EO	D COLOMY A	PYAN AD CAY	ED
AMOUNT OF REACH FAVO	KABLE FU >70%	40-70%	20-40%	<20%
		Score	Score	Score
	Score			8
4 or 5 types present	20	16	12	7
3 types present	19	15	11	
2 types present	18	(14)	10	6
1 type present	17	13	9	5
No types present	0			Subtotal 14
No woody vegetation in riparian zone Remarks_				Subtotal 17
Minimal				
III. Bottom Substrate (silt, sand, detritus, gravel, cobble	, boulder)	Look at entire re	ach for substrate	scoring, but only look at riffle
for embeddedness, and use rocks from all parts of riffle-loo	k for "mud l	line" or difficulty	extracting rocks	
A. substrate with good mix of gravel, cobble an	ıd boulders			<u>Score</u>
1. embeddedness <20% (very little sand,	usually only	behind large bou	ılders)	15
2. embeddedness 20-40%		***********		12
3. embeddedness 40-80%				8
4. embeddedness >80%				3
B. substrate gravel and cobble				
1. embeddedness <20%	********			14
2. embeddedness 20-40%	*****			117
3. embeddedness 40-80%				6
4. embeddedness >80%				2
C. substrate mostly gravel				
1. embeddedness <50%				8
2. embeddedness >50%				
D. substrate homogeneous	••••			
1. substrate nearly all bedrock				3
2. substrate nearly all sand				
3. substrate nearly all detritus				2
4. substrate nearly all silt/ clay				
				Subtotal
Remarks				
IV. Pool Variety Pools are areas of deeper than average	marimum d	anthe with little	er no curfoca turl	nulence Water velocities
associated with pools are always slow. Pools may take the	form of "nor	-Lat water" const	I nools behind b	aulders or obstructions in
associated with pools are always slow. Pools may take the	min or por	ACI WAICI, SIIIAI	i pools ocimio o	Juigors or costructions, m
large high gradient streams, or side eddies.				Canra
A. Pools present				Score
1. Pools Frequent (>30% of 200m area surveyed)				(3)
a. variety of pool sizes	. 1 . 2711	***************************************		
b. pools about the same size (indicates po	ois filling in	ı)	************	8
2. Pools Infrequent (<30% of the 200m area surve	yea)			
a. variety of pool sizes	**********	*****		
b. pools about the same size	****************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4
B. Pools absent	***************************************		************	
		N=4 =	-	Subtotal ///
Pool bottom boulder-cobble-hard Bottom sandy-sink	as you wall	Silt bottom	☐ Some pools of	ver wader depth
Remarks			·	i 1
				Page Total 40

V. Riffle Habitats Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Scor		Infrequent	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 15	12		
Defiffe as wide as stream but riffle length is not 2X stream width	7		
C. riffle not as wide as stream and riffle length is not 2X stream width	3		
Profiles should	Çı,	btotal 16	
Channel Slope: Typical for area	Su	ototai <u>14</u>	
VI. Bank Stability and Vegetation	Left Bank	Rt. Bank	
FACE UPSTREAM	Score	Score	
A. Banks stable		-	
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion	on_//	(7)	
R Erosion areas present		6	
1. diverse trees, shrubs, grass; plants healthy with good root systems	. 6 5	5	
2. few trees or small trees and shrubs; vegetation appears generally healthy		3	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding	v., 2	2	
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow	/ ž	Õ.,	
5. little or no bank vegetation, mass erosion and bank failure evident		Total 14	
Remarks			
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surrounlight when the sun is directly overhead. Note shading from mountains, but not use to score the	face. Canop is metric.		k out
		Score 10	
A. Stream with good canopy with some breaks for light penetration	******	10	
R Stream with full canony - breaks for light penetration absent	******	8	
C. Stream with partial canopy - sunlight and shading are essentially equal	*******	\bigcirc	
D. Stream with minimal canopy - full sun in all but a few areas	*******	4	
E. No canopy and no shading.		•	
Remarks Alder transplants on a few meander bends, but		Subtotal Z	\$ g
otherwise full sun			
Will. Riparian vegetative Zone which form is green of natural vegetation adjacent to stream (can go beyone	d floodplain). Definition:	A brea
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly e	nter the stre	am, such as p	aths
down to stream, storm drains, uprooted trees, otter slides, etc.			
FACE UPSTREAM	Lft. Bank	Rt. Bank	
Dominant vegetation: Trees	Score	Score	
A. Riparian zone intact (no breaks) 1. width > 18 meters	$\overline{(3)}$	\bigcirc	
2. width 12-18 meters	4	4	
2. width 6.12 meters	3	3	74
3. width 6-12 meters	2	2	
B. Riparian zone not intact (breaks)			
1. breaks rare			
a. width > 18 meters	4	4	
b. width 12-18 meters	3	3	
c. width 6-12 meters	2	2	
d, width < 6 meters	1	1	
2. breaks common	2	2	
a. width > 18 meters	3	3	
b. width 12-18 meters		1	
c. width 6-12 meters	<i>₩</i>	≥₹ 5	
Remarks Dlanted but Still young we	_BY	Total	
Remarks Planted but still young weg	Page T	intel the	
Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.	Page 1 TAL SCOP		

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

This side is 45° bank angle.

Site Sketch:

Other comments:	